HEURISTICS FOR -CLASS TOWERS OF REAL QUADRATIC FIELDS
Abstract Let $p$ be an odd prime. For a number field $K$ , we let $K_{\infty }$ be the maximal unramified pro- $p$ extension of $K$ ; we call the group $\text{Gal}(K_{\infty }/K)$ the $p$ -class tower group of $K$ . In a previous work, as a non-abelian generalization of the work of Cohen and Lenst...
Saved in:
Published in | Journal of the Institute of Mathematics of Jussieu Vol. 20; no. 4; pp. 1429 - 1452 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Cambridge
Cambridge University Press
01.07.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Abstract
Let
$p$
be an odd prime. For a number field
$K$
, we let
$K_{\infty }$
be the maximal unramified pro-
$p$
extension of
$K$
; we call the group
$\text{Gal}(K_{\infty }/K)$
the
$p$
-class tower group of
$K$
. In a previous work, as a non-abelian generalization of the work of Cohen and Lenstra on ideal class groups, we studied how likely it is that a given finite
$p$
-group occurs as the
$p$
-class tower group of an imaginary quadratic field. Here we do the same for an arbitrary real quadratic field
$K$
as base. As before, the action of
$\text{Gal}(K/\mathbb{Q})$
on the
$p$
-class tower group of
$K$
plays a crucial role; however, the presence of units of infinite order in the ground field significantly complicates the possibilities for the groups that can occur. We also sharpen our results in the imaginary quadratic field case by removing a certain hypothesis, using ideas of Boston and Wood. In the appendix, we show how the probabilities introduced for finite
$p$
-groups can be extended in a consistent way to the infinite pro-
$p$
groups which can arise in both the real and imaginary quadratic settings. |
---|---|
AbstractList | Abstract
Let
$p$
be an odd prime. For a number field
$K$
, we let
$K_{\infty }$
be the maximal unramified pro-
$p$
extension of
$K$
; we call the group
$\text{Gal}(K_{\infty }/K)$
the
$p$
-class tower group of
$K$
. In a previous work, as a non-abelian generalization of the work of Cohen and Lenstra on ideal class groups, we studied how likely it is that a given finite
$p$
-group occurs as the
$p$
-class tower group of an imaginary quadratic field. Here we do the same for an arbitrary real quadratic field
$K$
as base. As before, the action of
$\text{Gal}(K/\mathbb{Q})$
on the
$p$
-class tower group of
$K$
plays a crucial role; however, the presence of units of infinite order in the ground field significantly complicates the possibilities for the groups that can occur. We also sharpen our results in the imaginary quadratic field case by removing a certain hypothesis, using ideas of Boston and Wood. In the appendix, we show how the probabilities introduced for finite
$p$
-groups can be extended in a consistent way to the infinite pro-
$p$
groups which can arise in both the real and imaginary quadratic settings. Let \(p\) be an odd prime. For a number field \(K\), we let \(K_{\infty }\) be the maximal unramified pro-\(p\) extension of \(K\); we call the group \(\text{Gal}(K_{\infty }/K)\) the \(p\)-class tower group of \(K\). In a previous work, as a non-abelian generalization of the work of Cohen and Lenstra on ideal class groups, we studied how likely it is that a given finite \(p\)-group occurs as the \(p\)-class tower group of an imaginary quadratic field. Here we do the same for an arbitrary real quadratic field \(K\) as base. As before, the action of \(\text{Gal}(K/\mathbb{Q})\) on the \(p\)-class tower group of \(K\) plays a crucial role; however, the presence of units of infinite order in the ground field significantly complicates the possibilities for the groups that can occur. We also sharpen our results in the imaginary quadratic field case by removing a certain hypothesis, using ideas of Boston and Wood. In the appendix, we show how the probabilities introduced for finite \(p\)-groups can be extended in a consistent way to the infinite pro-\(p\) groups which can arise in both the real and imaginary quadratic settings. |
Author | Bush, Michael R. Hajir, Farshid Boston, Nigel |
Author_xml | – sequence: 1 givenname: Nigel surname: Boston fullname: Boston, Nigel – sequence: 2 givenname: Michael R. surname: Bush fullname: Bush, Michael R. – sequence: 3 givenname: Farshid surname: Hajir fullname: Hajir, Farshid |
BookMark | eNplkEFrg0AQhZeSQpO0P6C3hZ5tZ3Yddz2K0UQQpK7So-iq0NDGVJND_31N01t5h3m8-ZiBt2KLw3DoGHtEeEZA9WLQVbM0oA8Anos3bDlH5EiQsPj1rnPZ37HVNO0BhCcIl4x2UZknpkhCw-Ms506YBsbwInuLcsOzmOdRkPLXMtjkwQzxOInSjblnt339MXUPf3PNyjgqwp2TZtskDFLHotYnR6Pf9L4VWluSuiVFDQmpO9F2rcLea6X0ZWtd2de2qWtFLmmAulXSE8pSI9fs6Xr3OA5f5246VfvhPB7ml5UgUugTKjlTeKXsOEzT2PXVcXz_rMfvCqG6tFP9a0f-ANM5Ug4 |
CitedBy_id | crossref_primary_10_1093_imrn_rnad234 crossref_primary_10_1007_s00222_024_01257_1 crossref_primary_10_1007_s00222_024_01271_3 |
Cites_doi | 10.1016/S0021-8693(02)00028-5 10.1007/s00208-016-1449-3 10.1007/978-3-540-37889-1 10.1016/S0747-7171(08)80082-X 10.1007/BFb0099440 10.1112/S0010437X17007102 10.1007/BF01239511 10.1006/jsco.1996.0125 |
ContentType | Journal Article |
Copyright | Cambridge University Press 2019 |
Copyright_xml | – notice: Cambridge University Press 2019 |
DBID | AAYXX CITATION 3V. 7SC 7XB 88I 8AL 8FD 8FE 8FG 8FK ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- L6V L7M L~C L~D M0N M2P M7S P5Z P62 PQEST PQQKQ PQUKI PRINS PTHSS Q9U |
DOI | 10.1017/S1474748019000641 |
DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Korea ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Science Database Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic |
DatabaseTitle | CrossRef Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest Engineering Collection ProQuest Central Korea Advanced Technologies Database with Aerospace Engineering Collection Advanced Technologies & Aerospace Collection ProQuest Computing Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest Central (Alumni) |
DatabaseTitleList | CrossRef Computer Science Database |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1475-3030 |
EndPage | 1452 |
ExternalDocumentID | 10_1017_S1474748019000641 |
GroupedDBID | -E. .FH 09C 09E 0E1 0R~ 29L 3V. 4.4 5GY 5VS 74X 74Y 7~V 88I 8FE 8FG 8R4 8R5 AAAZR AABES AABWE AACJH AAGFV AAKTX AANRG AARAB AASVR AAUKB AAYXX ABBXD ABGDZ ABITZ ABJCF ABJNI ABKKG ABMWE ABQTM ABQWD ABROB ABTCQ ABUWG ABVZP ABZCX ACBMC ACGFS ACGOD ACIMK ACIWK ACUIJ ACYZP ACZBM ACZUX ACZWT ADCGK ADDNB ADFEC ADFRT ADKIL ADOVH ADVJH AEBAK AEHGV AEMTW AENEX AENGE AEYYC AFFUJ AFKQG AFKRA AFLOS AFLVW AFUTZ AGABE AGBYD AGJUD AHQXX AHRGI AIGNW AIHIV AIOIP AISIE AJ7 AJCYY AJPFC AJQAS ALMA_UNASSIGNED_HOLDINGS ALVPG ALWZO AQJOH ARABE ARAPS ATUCA AUXHV AZQEC BBLKV BENPR BGHMG BGLVJ BLZWO BMAJL BPHCQ C0O CAG CBIIA CCPQU CCQAD CFAFE CHEAL CITATION CJCSC COF CS3 CTKSN DC4 DOHLZ DU5 DWQXO EBS EJD GNUQQ HCIFZ HG- HST HZ~ I.6 IH6 IOEEP IS6 I~P J36 J38 J3A J9A JHPGK JQKCU K6V K7- KCGVB KFECR L6V L98 LW7 M-V M0N M2P M7S NIKVX O9- OYBOY P2P P62 PQQKQ PROAC PTHSS PYCCK Q2X RAMDC RCA ROL RR0 S6- S6U SAAAG T9M UT1 WFFJZ WQ3 WXU WYP ZYDXJ 7SC 7XB 8AL 8FD 8FK JQ2 L7M L~C L~D PQEST PQUKI PRINS Q9U |
ID | FETCH-LOGICAL-c188t-819bf9c288c538d575b5238e2ded71f6d3393dc43facbaa7545800ad73627c5b3 |
IEDL.DBID | 8FG |
ISSN | 1474-7480 |
IngestDate | Thu Oct 10 19:03:23 EDT 2024 Thu Sep 26 17:55:03 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c188t-819bf9c288c538d575b5238e2ded71f6d3393dc43facbaa7545800ad73627c5b3 |
PQID | 2557195173 |
PQPubID | 43618 |
PageCount | 24 |
ParticipantIDs | proquest_journals_2557195173 crossref_primary_10_1017_S1474748019000641 |
PublicationCentury | 2000 |
PublicationDate | 2021-07-00 20210701 |
PublicationDateYYYYMMDD | 2021-07-01 |
PublicationDate_xml | – month: 07 year: 2021 text: 2021-07-00 |
PublicationDecade | 2020 |
PublicationPlace | Cambridge |
PublicationPlace_xml | – name: Cambridge |
PublicationTitle | Journal of the Institute of Mathematics of Jussieu |
PublicationYear | 2021 |
Publisher | Cambridge University Press |
Publisher_xml | – name: Cambridge University Press |
References | Boston (S1474748019000641_r5) 2006 S1474748019000641_r7 S1474748019000641_r6 S1474748019000641_r13 S1474748019000641_r14 Kisilevsky (S1474748019000641_r9) 1989 Shafarevich (S1474748019000641_r16) 1963; 18 S1474748019000641_r12 S1474748019000641_r10 Gorenstein (S1474748019000641_r8) 2007 Koch (S1474748019000641_r11) 1975; 24–25 S1474748019000641_r1 Schoof (S1474748019000641_r15) 1986; 372 S1474748019000641_r4 S1474748019000641_r3 S1474748019000641_r2 |
References_xml | – volume-title: Finite Groups year: 2007 ident: S1474748019000641_r8 contributor: fullname: Gorenstein – volume: 24–25 start-page: 57 year: 1975 ident: S1474748019000641_r11 article-title: Über den p-Klassenkörperturm eines imaginär-quadratischen Zahlkörpers publication-title: Soc. Math. France, Astérisque contributor: fullname: Koch – ident: S1474748019000641_r14 – start-page: 1 volume-title: Computing Pro-p Galois Groups year: 2006 ident: S1474748019000641_r5 contributor: fullname: Boston – ident: S1474748019000641_r4 doi: 10.1016/S0021-8693(02)00028-5 – ident: S1474748019000641_r3 doi: 10.1007/s00208-016-1449-3 – ident: S1474748019000641_r12 doi: 10.1007/978-3-540-37889-1 – ident: S1474748019000641_r13 doi: 10.1016/S0747-7171(08)80082-X – ident: S1474748019000641_r7 doi: 10.1007/BFb0099440 – ident: S1474748019000641_r6 doi: 10.1112/S0010437X17007102 – ident: S1474748019000641_r2 doi: 10.1007/BF01239511 – volume: 18 start-page: 71 year: 1963 ident: S1474748019000641_r16 article-title: Extensions with prescribed ramification points publication-title: Publ. Math. Inst. Hautes Études Sci. contributor: fullname: Shafarevich – volume: 372 start-page: 209 year: 1986 ident: S1474748019000641_r15 article-title: Infinite class field towers of quadratic fields publication-title: J. Reine Angew. Math. contributor: fullname: Schoof – ident: S1474748019000641_r1 doi: 10.1006/jsco.1996.0125 – start-page: 556 volume-title: Théorie des nombres (Quebec, PQ, 1987) year: 1989 ident: S1474748019000641_r9 contributor: fullname: Kisilevsky – ident: S1474748019000641_r10 |
SSID | ssj0026251 |
Score | 2.2384923 |
Snippet | Abstract
Let
$p$
be an odd prime. For a number field
$K$
, we let
$K_{\infty }$
be the maximal unramified pro-
$p$
extension of
$K$
; we call the group... Let \(p\) be an odd prime. For a number field \(K\), we let \(K_{\infty }\) be the maximal unramified pro-\(p\) extension of \(K\); we call the group... |
SourceID | proquest crossref |
SourceType | Aggregation Database |
StartPage | 1429 |
SubjectTerms | Fields (mathematics) Generators Heuristic Mathematics Number theory |
Title | HEURISTICS FOR -CLASS TOWERS OF REAL QUADRATIC FIELDS |
URI | https://www.proquest.com/docview/2557195173 |
Volume | 20 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LTwIxEG4ULnowPiOKZA8e1KSRbgvtejG47AqGh9mFyIFk0-cRUPD_2y4Lhph4bW8zzXzfzHydAeC2gaWmhCmojVthRpSCQhkNheEY8UAJgtxv5P6g2RmTt0ljUhTcloWschMT80Ct5tLVyB8t9aXI0gGKnxef0G2Nct3VYoXGPigjn1L3qln8uk24LLfPEy7iNIeEbbuabmS0O3RnKMhhGe3i0m5YzrEmPgZHBUn0WmuvnoA9PTsFh_3thNXlGXjqROOkm466YerZRM6b3i2m9zDstdLUGw0_oiT1hrGXRK2eZ0lr25WiQi_uRr12eg7GcTQKO7DYgwAlYmwFLWgLE0ifMWnDk7IES9j0kWlfaUWRaSqMA6wkwYZLwTl1vbB6nStqwYnKhsAXoDSbz_Sl-6HN3Qh1rjXhJCA6QEoGhmDfWFwPJK6Ah40VssV63EW21oHR7I_JKqC6sVNWvPxl9uunq_-vr8GB7_QhufS1Ckqrr299YwF-JWq5F2ug_BIN3pMfOXaeCQ |
link.rule.ids | 315,783,787,12779,21402,27938,27939,33387,33758,43614,43819 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1NT8JAEN0oHtSD8TOiqHvwoCaNbHdhWy-GlNZWCyS0RA4kzX4eAQX_v7ulYIyJ1-1tppn3ZubNDAC3LSwUJZ50lLYnzIiUDpdaOVwzjJgvOUF2GrnXb8cj8jpujauC26KSVa5jYhmo5UzYGvmjob4UGTpA8fP8w7FXo2x3tTqhsQ12CDZAYyfFo5dNwmW4fZlwEas5JN6mq2lXRttH-4b8EpbRb1z6HZZLrIkOwUFFEmFn5dUjsKWmx2C_t9mwujgBT3E4GiZZngQZNIkcnNzNJ_dOkHayDOaD93CYwUEEh2EnhYa0dm0pKoBREqbd7BSMojAPYqe6g-AI5HlLx4A2175wPU-Y8CQNweImffSUK5WkSLclxj6WgmDNBGeM2l5Ys8kkNeBERYvjM1Cbzqbq3E5oM7tCnSlFGPGJ8pEUvibY1QbXfYHr4GFthWK-WndRrHRgtPhjsjporO1UVH_-ovjx08X_n2_Abpz30iJN-m-XYM-1WpFSBtsAteXnl7oyYL_k16VHvwG5UZ9R |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=HEURISTICS+FOR+-CLASS+TOWERS+OF+REAL+QUADRATIC+FIELDS&rft.jtitle=Journal+of+the+Institute+of+Mathematics+of+Jussieu&rft.au=Boston%2C+Nigel&rft.au=Bush%2C+Michael+R.&rft.au=Hajir%2C+Farshid&rft.date=2021-07-01&rft.issn=1474-7480&rft.eissn=1475-3030&rft.volume=20&rft.issue=4&rft.spage=1429&rft.epage=1452&rft_id=info:doi/10.1017%2FS1474748019000641&rft.externalDBID=n%2Fa&rft.externalDocID=10_1017_S1474748019000641 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1474-7480&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1474-7480&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1474-7480&client=summon |