HEURISTICS FOR -CLASS TOWERS OF REAL QUADRATIC FIELDS

Abstract Let $p$ be an odd prime. For a number field $K$ , we let $K_{\infty }$ be the maximal unramified pro- $p$ extension of  $K$ ; we call the group $\text{Gal}(K_{\infty }/K)$ the $p$ -class tower group of  $K$ . In a previous work, as a non-abelian generalization of the work of Cohen and Lenst...

Full description

Saved in:
Bibliographic Details
Published inJournal of the Institute of Mathematics of Jussieu Vol. 20; no. 4; pp. 1429 - 1452
Main Authors Boston, Nigel, Bush, Michael R., Hajir, Farshid
Format Journal Article
LanguageEnglish
Published Cambridge Cambridge University Press 01.07.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Abstract Let $p$ be an odd prime. For a number field $K$ , we let $K_{\infty }$ be the maximal unramified pro- $p$ extension of  $K$ ; we call the group $\text{Gal}(K_{\infty }/K)$ the $p$ -class tower group of  $K$ . In a previous work, as a non-abelian generalization of the work of Cohen and Lenstra on ideal class groups, we studied how likely it is that a given finite $p$ -group occurs as the $p$ -class tower group of an imaginary quadratic field. Here we do the same for an arbitrary real quadratic field $K$ as base. As before, the action of $\text{Gal}(K/\mathbb{Q})$ on the $p$ -class tower group of $K$ plays a crucial role; however, the presence of units of infinite order in the ground field significantly complicates the possibilities for the groups that can occur. We also sharpen our results in the imaginary quadratic field case by removing a certain hypothesis, using ideas of Boston and Wood. In the appendix, we show how the probabilities introduced for finite $p$ -groups can be extended in a consistent way to the infinite pro- $p$ groups which can arise in both the real and imaginary quadratic settings.
AbstractList Abstract Let $p$ be an odd prime. For a number field $K$ , we let $K_{\infty }$ be the maximal unramified pro- $p$ extension of  $K$ ; we call the group $\text{Gal}(K_{\infty }/K)$ the $p$ -class tower group of  $K$ . In a previous work, as a non-abelian generalization of the work of Cohen and Lenstra on ideal class groups, we studied how likely it is that a given finite $p$ -group occurs as the $p$ -class tower group of an imaginary quadratic field. Here we do the same for an arbitrary real quadratic field $K$ as base. As before, the action of $\text{Gal}(K/\mathbb{Q})$ on the $p$ -class tower group of $K$ plays a crucial role; however, the presence of units of infinite order in the ground field significantly complicates the possibilities for the groups that can occur. We also sharpen our results in the imaginary quadratic field case by removing a certain hypothesis, using ideas of Boston and Wood. In the appendix, we show how the probabilities introduced for finite $p$ -groups can be extended in a consistent way to the infinite pro- $p$ groups which can arise in both the real and imaginary quadratic settings.
Let \(p\) be an odd prime. For a number field \(K\), we let \(K_{\infty }\) be the maximal unramified pro-\(p\) extension of \(K\); we call the group \(\text{Gal}(K_{\infty }/K)\) the \(p\)-class tower group of \(K\). In a previous work, as a non-abelian generalization of the work of Cohen and Lenstra on ideal class groups, we studied how likely it is that a given finite \(p\)-group occurs as the \(p\)-class tower group of an imaginary quadratic field. Here we do the same for an arbitrary real quadratic field \(K\) as base. As before, the action of \(\text{Gal}(K/\mathbb{Q})\) on the \(p\)-class tower group of \(K\) plays a crucial role; however, the presence of units of infinite order in the ground field significantly complicates the possibilities for the groups that can occur. We also sharpen our results in the imaginary quadratic field case by removing a certain hypothesis, using ideas of Boston and Wood. In the appendix, we show how the probabilities introduced for finite \(p\)-groups can be extended in a consistent way to the infinite pro-\(p\) groups which can arise in both the real and imaginary quadratic settings.
Author Bush, Michael R.
Hajir, Farshid
Boston, Nigel
Author_xml – sequence: 1
  givenname: Nigel
  surname: Boston
  fullname: Boston, Nigel
– sequence: 2
  givenname: Michael R.
  surname: Bush
  fullname: Bush, Michael R.
– sequence: 3
  givenname: Farshid
  surname: Hajir
  fullname: Hajir, Farshid
BookMark eNplkEFrg0AQhZeSQpO0P6C3hZ5tZ3Yddz2K0UQQpK7So-iq0NDGVJND_31N01t5h3m8-ZiBt2KLw3DoGHtEeEZA9WLQVbM0oA8Anos3bDlH5EiQsPj1rnPZ37HVNO0BhCcIl4x2UZknpkhCw-Ms506YBsbwInuLcsOzmOdRkPLXMtjkwQzxOInSjblnt339MXUPf3PNyjgqwp2TZtskDFLHotYnR6Pf9L4VWluSuiVFDQmpO9F2rcLea6X0ZWtd2de2qWtFLmmAulXSE8pSI9fs6Xr3OA5f5246VfvhPB7ml5UgUugTKjlTeKXsOEzT2PXVcXz_rMfvCqG6tFP9a0f-ANM5Ug4
CitedBy_id crossref_primary_10_1093_imrn_rnad234
crossref_primary_10_1007_s00222_024_01257_1
crossref_primary_10_1007_s00222_024_01271_3
Cites_doi 10.1016/S0021-8693(02)00028-5
10.1007/s00208-016-1449-3
10.1007/978-3-540-37889-1
10.1016/S0747-7171(08)80082-X
10.1007/BFb0099440
10.1112/S0010437X17007102
10.1007/BF01239511
10.1006/jsco.1996.0125
ContentType Journal Article
Copyright Cambridge University Press 2019
Copyright_xml – notice: Cambridge University Press 2019
DBID AAYXX
CITATION
3V.
7SC
7XB
88I
8AL
8FD
8FE
8FG
8FK
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L6V
L7M
L~C
L~D
M0N
M2P
M7S
P5Z
P62
PQEST
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
DOI 10.1017/S1474748019000641
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Science Database
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
DatabaseTitle CrossRef
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest Engineering Collection
ProQuest Central Korea
Advanced Technologies Database with Aerospace
Engineering Collection
Advanced Technologies & Aerospace Collection
ProQuest Computing
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest Central (Alumni)
DatabaseTitleList CrossRef
Computer Science Database
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1475-3030
EndPage 1452
ExternalDocumentID 10_1017_S1474748019000641
GroupedDBID -E.
.FH
09C
09E
0E1
0R~
29L
3V.
4.4
5GY
5VS
74X
74Y
7~V
88I
8FE
8FG
8R4
8R5
AAAZR
AABES
AABWE
AACJH
AAGFV
AAKTX
AANRG
AARAB
AASVR
AAUKB
AAYXX
ABBXD
ABGDZ
ABITZ
ABJCF
ABJNI
ABKKG
ABMWE
ABQTM
ABQWD
ABROB
ABTCQ
ABUWG
ABVZP
ABZCX
ACBMC
ACGFS
ACGOD
ACIMK
ACIWK
ACUIJ
ACYZP
ACZBM
ACZUX
ACZWT
ADCGK
ADDNB
ADFEC
ADFRT
ADKIL
ADOVH
ADVJH
AEBAK
AEHGV
AEMTW
AENEX
AENGE
AEYYC
AFFUJ
AFKQG
AFKRA
AFLOS
AFLVW
AFUTZ
AGABE
AGBYD
AGJUD
AHQXX
AHRGI
AIGNW
AIHIV
AIOIP
AISIE
AJ7
AJCYY
AJPFC
AJQAS
ALMA_UNASSIGNED_HOLDINGS
ALVPG
ALWZO
AQJOH
ARABE
ARAPS
ATUCA
AUXHV
AZQEC
BBLKV
BENPR
BGHMG
BGLVJ
BLZWO
BMAJL
BPHCQ
C0O
CAG
CBIIA
CCPQU
CCQAD
CFAFE
CHEAL
CITATION
CJCSC
COF
CS3
CTKSN
DC4
DOHLZ
DU5
DWQXO
EBS
EJD
GNUQQ
HCIFZ
HG-
HST
HZ~
I.6
IH6
IOEEP
IS6
I~P
J36
J38
J3A
J9A
JHPGK
JQKCU
K6V
K7-
KCGVB
KFECR
L6V
L98
LW7
M-V
M0N
M2P
M7S
NIKVX
O9-
OYBOY
P2P
P62
PQQKQ
PROAC
PTHSS
PYCCK
Q2X
RAMDC
RCA
ROL
RR0
S6-
S6U
SAAAG
T9M
UT1
WFFJZ
WQ3
WXU
WYP
ZYDXJ
7SC
7XB
8AL
8FD
8FK
JQ2
L7M
L~C
L~D
PQEST
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c188t-819bf9c288c538d575b5238e2ded71f6d3393dc43facbaa7545800ad73627c5b3
IEDL.DBID 8FG
ISSN 1474-7480
IngestDate Thu Oct 10 19:03:23 EDT 2024
Thu Sep 26 17:55:03 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c188t-819bf9c288c538d575b5238e2ded71f6d3393dc43facbaa7545800ad73627c5b3
PQID 2557195173
PQPubID 43618
PageCount 24
ParticipantIDs proquest_journals_2557195173
crossref_primary_10_1017_S1474748019000641
PublicationCentury 2000
PublicationDate 2021-07-00
20210701
PublicationDateYYYYMMDD 2021-07-01
PublicationDate_xml – month: 07
  year: 2021
  text: 2021-07-00
PublicationDecade 2020
PublicationPlace Cambridge
PublicationPlace_xml – name: Cambridge
PublicationTitle Journal of the Institute of Mathematics of Jussieu
PublicationYear 2021
Publisher Cambridge University Press
Publisher_xml – name: Cambridge University Press
References Boston (S1474748019000641_r5) 2006
S1474748019000641_r7
S1474748019000641_r6
S1474748019000641_r13
S1474748019000641_r14
Kisilevsky (S1474748019000641_r9) 1989
Shafarevich (S1474748019000641_r16) 1963; 18
S1474748019000641_r12
S1474748019000641_r10
Gorenstein (S1474748019000641_r8) 2007
Koch (S1474748019000641_r11) 1975; 24–25
S1474748019000641_r1
Schoof (S1474748019000641_r15) 1986; 372
S1474748019000641_r4
S1474748019000641_r3
S1474748019000641_r2
References_xml – volume-title: Finite Groups
  year: 2007
  ident: S1474748019000641_r8
  contributor:
    fullname: Gorenstein
– volume: 24–25
  start-page: 57
  year: 1975
  ident: S1474748019000641_r11
  article-title: Über den p-Klassenkörperturm eines imaginär-quadratischen Zahlkörpers
  publication-title: Soc. Math. France, Astérisque
  contributor:
    fullname: Koch
– ident: S1474748019000641_r14
– start-page: 1
  volume-title: Computing Pro-p Galois Groups
  year: 2006
  ident: S1474748019000641_r5
  contributor:
    fullname: Boston
– ident: S1474748019000641_r4
  doi: 10.1016/S0021-8693(02)00028-5
– ident: S1474748019000641_r3
  doi: 10.1007/s00208-016-1449-3
– ident: S1474748019000641_r12
  doi: 10.1007/978-3-540-37889-1
– ident: S1474748019000641_r13
  doi: 10.1016/S0747-7171(08)80082-X
– ident: S1474748019000641_r7
  doi: 10.1007/BFb0099440
– ident: S1474748019000641_r6
  doi: 10.1112/S0010437X17007102
– ident: S1474748019000641_r2
  doi: 10.1007/BF01239511
– volume: 18
  start-page: 71
  year: 1963
  ident: S1474748019000641_r16
  article-title: Extensions with prescribed ramification points
  publication-title: Publ. Math. Inst. Hautes Études Sci.
  contributor:
    fullname: Shafarevich
– volume: 372
  start-page: 209
  year: 1986
  ident: S1474748019000641_r15
  article-title: Infinite class field towers of quadratic fields
  publication-title: J. Reine Angew. Math.
  contributor:
    fullname: Schoof
– ident: S1474748019000641_r1
  doi: 10.1006/jsco.1996.0125
– start-page: 556
  volume-title: Théorie des nombres (Quebec, PQ, 1987)
  year: 1989
  ident: S1474748019000641_r9
  contributor:
    fullname: Kisilevsky
– ident: S1474748019000641_r10
SSID ssj0026251
Score 2.2384923
Snippet Abstract Let $p$ be an odd prime. For a number field $K$ , we let $K_{\infty }$ be the maximal unramified pro- $p$ extension of  $K$ ; we call the group...
Let \(p\) be an odd prime. For a number field \(K\), we let \(K_{\infty }\) be the maximal unramified pro-\(p\) extension of \(K\); we call the group...
SourceID proquest
crossref
SourceType Aggregation Database
StartPage 1429
SubjectTerms Fields (mathematics)
Generators
Heuristic
Mathematics
Number theory
Title HEURISTICS FOR -CLASS TOWERS OF REAL QUADRATIC FIELDS
URI https://www.proquest.com/docview/2557195173
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LTwIxEG4ULnowPiOKZA8e1KSRbgvtejG47AqGh9mFyIFk0-cRUPD_2y4Lhph4bW8zzXzfzHydAeC2gaWmhCmojVthRpSCQhkNheEY8UAJgtxv5P6g2RmTt0ljUhTcloWschMT80Ct5tLVyB8t9aXI0gGKnxef0G2Nct3VYoXGPigjn1L3qln8uk24LLfPEy7iNIeEbbuabmS0O3RnKMhhGe3i0m5YzrEmPgZHBUn0WmuvnoA9PTsFh_3thNXlGXjqROOkm466YerZRM6b3i2m9zDstdLUGw0_oiT1hrGXRK2eZ0lr25WiQi_uRr12eg7GcTQKO7DYgwAlYmwFLWgLE0ifMWnDk7IES9j0kWlfaUWRaSqMA6wkwYZLwTl1vbB6nStqwYnKhsAXoDSbz_Sl-6HN3Qh1rjXhJCA6QEoGhmDfWFwPJK6Ah40VssV63EW21oHR7I_JKqC6sVNWvPxl9uunq_-vr8GB7_QhufS1Ckqrr299YwF-JWq5F2ug_BIN3pMfOXaeCQ
link.rule.ids 315,783,787,12779,21402,27938,27939,33387,33758,43614,43819
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1NT8JAEN0oHtSD8TOiqHvwoCaNbHdhWy-GlNZWCyS0RA4kzX4eAQX_v7ulYIyJ1-1tppn3ZubNDAC3LSwUJZ50lLYnzIiUDpdaOVwzjJgvOUF2GrnXb8cj8jpujauC26KSVa5jYhmo5UzYGvmjob4UGTpA8fP8w7FXo2x3tTqhsQ12CDZAYyfFo5dNwmW4fZlwEas5JN6mq2lXRttH-4b8EpbRb1z6HZZLrIkOwUFFEmFn5dUjsKWmx2C_t9mwujgBT3E4GiZZngQZNIkcnNzNJ_dOkHayDOaD93CYwUEEh2EnhYa0dm0pKoBREqbd7BSMojAPYqe6g-AI5HlLx4A2175wPU-Y8CQNweImffSUK5WkSLclxj6WgmDNBGeM2l5Ys8kkNeBERYvjM1Cbzqbq3E5oM7tCnSlFGPGJ8pEUvibY1QbXfYHr4GFthWK-WndRrHRgtPhjsjporO1UVH_-ovjx08X_n2_Abpz30iJN-m-XYM-1WpFSBtsAteXnl7oyYL_k16VHvwG5UZ9R
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=HEURISTICS+FOR+-CLASS+TOWERS+OF+REAL+QUADRATIC+FIELDS&rft.jtitle=Journal+of+the+Institute+of+Mathematics+of+Jussieu&rft.au=Boston%2C+Nigel&rft.au=Bush%2C+Michael+R.&rft.au=Hajir%2C+Farshid&rft.date=2021-07-01&rft.issn=1474-7480&rft.eissn=1475-3030&rft.volume=20&rft.issue=4&rft.spage=1429&rft.epage=1452&rft_id=info:doi/10.1017%2FS1474748019000641&rft.externalDBID=n%2Fa&rft.externalDocID=10_1017_S1474748019000641
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1474-7480&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1474-7480&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1474-7480&client=summon