HEURISTICS FOR -CLASS TOWERS OF REAL QUADRATIC FIELDS

Abstract Let $p$ be an odd prime. For a number field $K$ , we let $K_{\infty }$ be the maximal unramified pro- $p$ extension of  $K$ ; we call the group $\text{Gal}(K_{\infty }/K)$ the $p$ -class tower group of  $K$ . In a previous work, as a non-abelian generalization of the work of Cohen and Lenst...

Full description

Saved in:
Bibliographic Details
Published inJournal of the Institute of Mathematics of Jussieu Vol. 20; no. 4; pp. 1429 - 1452
Main Authors Boston, Nigel, Bush, Michael R., Hajir, Farshid
Format Journal Article
LanguageEnglish
Published Cambridge Cambridge University Press 01.07.2021
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Abstract Let $p$ be an odd prime. For a number field $K$ , we let $K_{\infty }$ be the maximal unramified pro- $p$ extension of  $K$ ; we call the group $\text{Gal}(K_{\infty }/K)$ the $p$ -class tower group of  $K$ . In a previous work, as a non-abelian generalization of the work of Cohen and Lenstra on ideal class groups, we studied how likely it is that a given finite $p$ -group occurs as the $p$ -class tower group of an imaginary quadratic field. Here we do the same for an arbitrary real quadratic field $K$ as base. As before, the action of $\text{Gal}(K/\mathbb{Q})$ on the $p$ -class tower group of $K$ plays a crucial role; however, the presence of units of infinite order in the ground field significantly complicates the possibilities for the groups that can occur. We also sharpen our results in the imaginary quadratic field case by removing a certain hypothesis, using ideas of Boston and Wood. In the appendix, we show how the probabilities introduced for finite $p$ -groups can be extended in a consistent way to the infinite pro- $p$ groups which can arise in both the real and imaginary quadratic settings.
ISSN:1474-7480
1475-3030
DOI:10.1017/S1474748019000641