Surface active sites enriched CoNiFe-Manganite: An effective electrode for high-performance supercapacitors
The electrochemical performance of ternary metal oxide electrodes exhibiting faradic battery-type characteristics, represents a promising and desirable solution for addressing the ongoing energy crisis. In the current investigation, we present the optimized solution-combustion synthesis of Co0.03Ni0...
Saved in:
Published in | Journal of alloys and compounds Vol. 1002; p. 175232 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
15.10.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The electrochemical performance of ternary metal oxide electrodes exhibiting faradic battery-type characteristics, represents a promising and desirable solution for addressing the ongoing energy crisis. In the current investigation, we present the optimized solution-combustion synthesis of Co0.03Ni0.97FeγMn2-γO4 nanoparticles, with varying Fe concentrations (γ=0.01, 0.05, 0.10 %), specifically tailored for application in supercapacitors. The Styrofoam-natured (CNMFO:1) exhibited outstanding specific capacitance, reaching 489.12 Fg−1 at a scan rate of 50 mVs−1. Moreover, validation through galvanostatic charge-discharge (GCD) investigations substantiated a notable specific capacitance of 391.41 Fg−1, achieved at a current density of 1Ag−1. In addition, the CNMFO:1 electrode demonstrated remarkable cyclic stability, retaining 83.87 % of its initial performance over 6000 cycles. Similarly, the fabricated asymmetric device of (CNMFO:1||AC) also demonstrated a maximum specific capacitance of 33.86 Fg−1 under a current density of 1Ag−1, which exhibits good energy and power density of 10.52 Wh Kg−1 and 749.34 W Kg−1 respectively. From the overall observation, the CNMFO:1 electrode exhibited notable cyclic stability and electrochemical reversibility. This research recommends that CNMFO:1 nanocomposite have an extraordinary potential for evolution of active electrode materials forthcoming supercapacitors in energy storage system.
•Synthesis: Co0.03Ni0.97Mn2-γO4 (γ=Fe:0.01, 0.05, 0.10 %) nanoparticle using solution-combustion route.•Characterization confirms the successful formation of the Styrofoam natured of the CNMFO:1 electrode.•The prepared CNMFO:1 electrode exhibits an excellent specific capacitance of 489.12 Fg−1 at 50 mV−1.•The CNMFO:1 electrode showcased prolonged cyclic stability.•The developed ASC device delivers an impressive energy and power density of 10.52 Wh Kg−1 and 749.34 W Kg−1 |
---|---|
ISSN: | 0925-8388 1873-4669 |
DOI: | 10.1016/j.jallcom.2024.175232 |