Electrode redox properties of Ba1−xLaxFeO3−δ as cobalt free cathode materials for intermediate-temperature SOFCs
Cobalt-free perovskite oxides Ba1−xLaxFeO3−δ (x = 0.1–0.4) were synthesized by glycine-nitrate combustion method and investigated as a candidate cathode material for intermediate temperature solid oxide fuel cells (IT-SOFCs). Cubic perovskite structure was obtained when 10–20 mol% La was substituted...
Saved in:
Published in | International journal of hydrogen energy Vol. 39; no. 23; pp. 12092 - 12100 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Kidlington
Elsevier Ltd
04.08.2014
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Cobalt-free perovskite oxides Ba1−xLaxFeO3−δ (x = 0.1–0.4) were synthesized by glycine-nitrate combustion method and investigated as a candidate cathode material for intermediate temperature solid oxide fuel cells (IT-SOFCs). Cubic perovskite structure was obtained when 10–20 mol% La was substituted at Ba-site in Ba1−xLaxFeO3−δ, and the crystal structure was transformed from cubic structure into orthorhombic one at x ≥ 0.2 with an addition of lanthanum doping. The thermal expansion coefficients of Ba1−xLaxFeO3−δ oxides decreased gradually with La content due to increasing electrostatic attraction forces. A gradual increase existed in electrical conductivity tendency with La content due to disproportionation of Fe3+ and the larger extent of electron clouds. The electrode redox performance was investigated by electrochemical impedance spectroscopy. Among Ba1−xLaxFeO3−δ series oxides, Ba0.9La0.1FeO3−δ exhibited the best electrochemical performance. The area specific resistance (ASR) of Ba0.9La0.1FeO3−δ was 0.079 Ω cm2, 0.37 Ω cm2, and 2.15 Ω cm2 at 800, 700 and 600 °C under open circuit potential. To investigate electrochemical performances after cathodic polarization, bias potentials were employed on Ba1−xLaxFeO3−δ cathode at 650–800 °C. The results demonstrated the potential applications for Ba0.9La0.1FeO3−δ as cathode materials for IT-SOFCs as a tradeoff between electrochemical and thermal expansion performance.
•Cobalt-free Ba1−xLaxFeO3−δ (BLF) was evaluated as candidate cathode for IT-SOFCs.•The polarization resistance of Ba0.9La0.1FeO3−δ was as low as 0.079 Ω cm2 at 800 °C.•The thermal expansion coefficients of BLF decreased gradually with La content. |
---|---|
ISSN: | 0360-3199 1879-3487 |
DOI: | 10.1016/j.ijhydene.2014.06.009 |