Fluorescent gold nanoclusters stabilized by lysozyme: Synthesis and deposition kinetics on silica substrates
Gold nanoclusters suspension were effectively synthesized under alkaline conditions in a chemical reduction process involving gold(III) chloride trihydrate and lysozyme (LYZ) molecules. Their size determined by high-resolution transmission electron microscopy (HR-TEM) was equal to 1.9 ± 0.5 nm. The...
Saved in:
Published in | Journal of luminescence Vol. 277; p. 120912 |
---|---|
Main Authors | , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.01.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Gold nanoclusters suspension were effectively synthesized under alkaline conditions in a chemical reduction process involving gold(III) chloride trihydrate and lysozyme (LYZ) molecules. Their size determined by high-resolution transmission electron microscopy (HR-TEM) was equal to 1.9 ± 0.5 nm. The nanoclusters, referred to as LYZ-Au NCs, were stable at pH below 4 and above 8, exhibiting a hydrodynamic diameter between 8 and 11 nm. The isoelectric point of LYZ-Au NCs appeared at pH 5.0. The suspension showed a pronounced fluorescence characterized by the red-emitting band at 668 nm. The deposition kinetics and stability of LYZ-Au NCs on bare and poly(diallyldimethylammonium chloride) (PDADMAC)-modified silica sensors were studied using quartz crystal microbalance (QCM). The influence of ionic strength, pH, and suspension concentration on the kinetics of LYZ-Au NCs deposition was determined. The significant increase in the maximum coverage of LYZ-Au NCs with ionic strength was attributed to the decreasing range of electrostatic interactions between deposited clusters. Atomic force microscopy (AFM) confirmed the formation of homogeneous layers of LYZ-Au NCs with controlled coverage on bare silica at pH 3.5 and PDADMAC-modified silica. It was shown by confocal microscopy investigations, that these layers also exhibited pronounced fluorescent properties.
[Display omitted]
•pH and ionic strength-dependent stability of fluorescence LYZ-Au NCs were determined.•Kinetics of LYZ-Au NCs deposition on surfaces and coverage of layers were quantitively determined using gravimetric method.•Red-emitting layers of LYZ-Au NCs were formed on positively and negatively-charged surfaces. |
---|---|
ISSN: | 0022-2313 |
DOI: | 10.1016/j.jlumin.2024.120912 |