First report of apple hammerhead viroid infecting apple trees in Montenegro
Apple hammerhead viroid (AHVd, Pelamoviroid, Avsunviroidae) is one of the five viroids infecting apples. It has been identified on all continents except Australia since its viroid nature was confirmed (DiSerio et al. 2018; CABI and EPPO 2022). AHVd has been found in apple trees showing leaf mosaic,...
Saved in:
Published in | Plant disease |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
01.09.2024
|
Subjects | |
Online Access | Get more information |
Cover
Loading…
Summary: | Apple hammerhead viroid (AHVd, Pelamoviroid, Avsunviroidae) is one of the five viroids infecting apples. It has been identified on all continents except Australia since its viroid nature was confirmed (DiSerio et al. 2018; CABI and EPPO 2022). AHVd has been found in apple trees showing leaf mosaic, ringspot and dieback (Hamdi et al., 2021). Apple (Malus domestica Borkh.) and its wild relatives are traditionally grown in Montenegro. With an annual production of 7767 tons on 216 ha, it is the second most important fruit tree (after plum) in the country (Anonymous 2022). In a 2020-2022 survey, 29 apple trees exhibiting virus-like symptoms (e.g. mosaic, necrosis) were sampled throughout Montenegro, including 16 locations in eight municipalities (Podgorica, Danilovgrad, Niksic, Mojkovac, Bijelo Polje, Berane, Pljevlja and Savnik). Small RNAs were isolated using the mirVana miRNA Isolation Kit (Ambion, Life Technologies) and pooled into three bulk samples. Each bulk contained 9 to 10 samples. Libraries of sRNAs were constructed using the Ion Total RNA-Seq Kit v2 and barcoded using the Xpress RNA-Seq Barcode 1-16 Kit (Ion Torrent) according to the manufacturer's instructions. Small RNA library sequencing was performed on Illumina platform (Novogene Europe) yielding 9.9, 9.8 and 18.6 million reads in the three libraries. The CLC Genomics Workbench software was used to demultiplex the reads into pools using the 'Demultiplex Reads' tool. The online program VirusDetect (Zheng et al. 2017) was used for virus/viroid detection and identification. Besides viruses known to infect apple (apple stem grooving virus, apple stem pitting virus, apple mosaic virus), contigs mapping to AHVd were identified in all three bulks enabling full AHVd genomes reconstruction. To verify AHVd presence, all 29 apple samples were tested by reverse transcription-polymerase chain reaction (RT-PCR) using the AHVd PG13f/PG12r primers (Messmer et al. 2017). AHVd amplicons were obtained in three samples (30/21, 32/21 and 38/21) from bulk 1 and two samples (47/21 and 55/21) from bulk 2, while all samples from bulk 3 tested negative potentially due to the low titer of the pathogen or nucleotide mismatches at the 3' end of the primers. The three amplicons from bulk 1 were Sanger sequenced and partial AHVd genomes over 200 nts were obtained from two of them (30/21 and 32/21) (GenBank acc. nos. OQ863319 and OR020603). Furthermore, three full consensus AHVd genomes were assembled in Geneious Prime by mapping Sanger sequences onto contigs from Virus Detect and named 30/21, 32/21 and 38/21 (acc. nos. PP133245, -46, and -47, respectively). All three genomes exhibited conserved hammerhead motifs (Messmer et al. 2017). In BLASTn analysis, the isolate 30/21 from Montenegro shared the highest nt identity (98.8%) with the isolate SA-36 (ON564299) from Czechia, while 32/21 and 38/21 showed the highest identities (95.4% and 92.3%) with isolates SD17_2-3 (MK188691) from Canada and JF2 (ON564298) from Czechia, respectively. To the best of our knowledge, this is the first report of AHVd infecting Malus domestica in Montenegro. The AHVd-positive samples 30/21 and 32/21 originated from at least two-decade-old apple trees from Niksic, whilst 38/21 came from a 40-year-old tree from Mojkovac district, suggesting that this viroid has long been present in different parts of the country. The AHVd discovery in Montenegro should be considered in any phytosanitary regulations and pome fruit certification program in the country. |
---|---|
ISSN: | 0191-2917 |
DOI: | 10.1094/PDIS-02-24-0474-PDN |