Exercise increases the expression of glucose transport and lipid metabolism genes at optimum level time point 6 h post-exercise in rat skeletal muscle

More than 90% of diabetes cases are type 2 diabetes characterized by persistent increase in glucose (hyperglycemia), lipid, and protein metabolic disorders that may induce insulin resistance. Individuals who suffer from type 2 diabetes are partly characterized by down-regulation of glucose transport...

Full description

Saved in:
Bibliographic Details
Published inComparative clinical pathology Vol. 31; no. 1; pp. 147 - 153
Main Authors Joseph, Jitcy S., Fagbohun, Oladapo F.
Format Journal Article
LanguageEnglish
Published London Springer London 01.02.2022
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:More than 90% of diabetes cases are type 2 diabetes characterized by persistent increase in glucose (hyperglycemia), lipid, and protein metabolic disorders that may induce insulin resistance. Individuals who suffer from type 2 diabetes are partly characterized by down-regulation of glucose transport and mitochondrial lipid oxidizing genes. Nuclear respiratory factor, (NRF)-1, is a mitochondrial transcriptional factor shown to be involved in glucose transport and acts as potential therapeutic modality in the management of T2DM. In this study, we accessed NRF-1 and its target gene expression crucial in glucose transport and lipid oxidation during exercise. Five- to 6-week-old male Wistar rats were exercised to identify the time-point for an optimum increase in the levels of NRF-1 and target genes. Gastrocnemius muscles were harvested after 0, 2, 4, 6, 8, 10, 12, and 15 h post-exercise and non-exercise rats. Primers were used to amplify the region of the genes; Nrf-1, glut 4, carnitine palmitoyltransferase, peroxisome proliferator-activated receptor gamma co-activator 1, mef2a, and acetyl-CoA carboxylase-1. Relative mRNA expression was normalized to the Actin reference gene. Cpt-1, Nrf-1, mef2a, glut4, cpt2, and Pgc-1 showed 2.5, 8, 1.2, 4.1, 4.6, 3.5-folds increase respectively after 8 h post-exercise compared with control, whereas Acc-1 showed a 3.1-fold decrease in gene expression ratio after 6 h post-exercise. Nrf-1 binding to cpt-1 and mef2a increased with 3 and 3.5-folds, respectively. Nrf-1 was increased by exercise with its binding to target genes which has huge implications in ameliorating type 2 diabetes and insulin resistance. Graphical abstract Exercise increases NRF-1 bound Mef2a to optimum level at time point 4 h post exercise.
ISSN:1618-5641
1618-565X
DOI:10.1007/s00580-022-03318-4