Strategies for Optimizing Shut-In Time: New Insights from Shale Long-Term Hydration Experiments
In the process of hydraulic fracturing, fracturing fluid invades the formation and reacts with shale. Water-sensitive clay minerals swell when exposed to water. This results in a change in the mechanical properties of shale. However, the influences of a long-term water–shale reaction on mechanical p...
Saved in:
Published in | Processes Vol. 12; no. 6; p. 1096 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.06.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | In the process of hydraulic fracturing, fracturing fluid invades the formation and reacts with shale. Water-sensitive clay minerals swell when exposed to water. This results in a change in the mechanical properties of shale. However, the influences of a long-term water–shale reaction on mechanical properties are still unclear, and an optimization strategy of the shut-in time is required. In this paper, an optimization strategy for the shut-in time based on a shale long-term hydration experiment is proposed. In this paper, the water–shale reaction is simulated by laboratory experiments under normal temperature and pressure. The experiments are performed based on specimens from a shale outcrop. Clay and mineral composition, Young’s modulus, surface hardness, and tensile strength parameters are measured at 30-day intervals for 90 days. A CT scan was performed for 180 days. The experimental results show that the mass fraction of clay increased by 14.719%. In addition, significant argillaceous shedding occurs during the water–shale reaction period of 3–4 months. By testing the tensile strength, uniaxial compression decreases by 90.481% in three months. The Young’s modulus of mineral points decreases to 40% after reaction for three months. The shale has softened. The softening process is nonlinear and there are inflection points. The diffusion behavior of clay minerals and the expansion behavior of new fractures are observed by CT during 3–4 months of water–shale reaction. The results show that the shale softening and pore fracture structure changes are non-linear and heterogeneous, resulting in critical water–shale reaction time. According to the experimental results, the critical water–shale reaction time can be summarized. In this time, the fracture volume increases significantly, which is conducive to increasing oil and gas production. However, the fracture volume is not significantly increased by prolonging the shut-in time. The experimental results can guide the design of hydraulic fracturing shut-in time of shale reservoirs. |
---|---|
ISSN: | 2227-9717 2227-9717 |
DOI: | 10.3390/pr12061096 |