Raman phonons in multiferroic FeVO4 crystals
Multiferroic materials are promising candidates for next-generation multi-functional devices, because of the coexistence of multi-orders and the coupling between the orders. FeVO4 has been confirmed to be a multiferroic compound,since it exhibits both ferroelectricity and antiferromagnetic ordering...
Saved in:
Published in | 中国物理B:英文版 no. 12; pp. 198 - 202 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
01.12.2015
|
Subjects | |
Online Access | Get full text |
ISSN | 1674-1056 2058-3834 |
DOI | 10.1088/1674-1056/24/12/126301 |
Cover
Summary: | Multiferroic materials are promising candidates for next-generation multi-functional devices, because of the coexistence of multi-orders and the coupling between the orders. FeVO4 has been confirmed to be a multiferroic compound,since it exhibits both ferroelectricity and antiferromagnetic ordering at low temperatures. In this paper, we have performed careful Raman scattering measurements on high-quality Fe VO4 single crystals. The compound has a very rich phonon structure due to its low crystal symmetry(P- 1) and at least 47 Raman-active phonon modes have been resolved in the low and hightemperature spectra. Most of the observed modes are well assigned with aid of first-principles calculations and symmetry analysis. The present study provides an experimental basis for exploring spin-lattice coupling and the mechanism of multiferroicity in FeVO4 |
---|---|
Bibliography: | Raman scattering,phonon assignment multiferroics 11-5639/O4 Multiferroic materials are promising candidates for next-generation multi-functional devices, because of the coexistence of multi-orders and the coupling between the orders. FeVO4 has been confirmed to be a multiferroic compound,since it exhibits both ferroelectricity and antiferromagnetic ordering at low temperatures. In this paper, we have performed careful Raman scattering measurements on high-quality Fe VO4 single crystals. The compound has a very rich phonon structure due to its low crystal symmetry(P- 1) and at least 47 Raman-active phonon modes have been resolved in the low and hightemperature spectra. Most of the observed modes are well assigned with aid of first-principles calculations and symmetry analysis. The present study provides an experimental basis for exploring spin-lattice coupling and the mechanism of multiferroicity in FeVO4 |
ISSN: | 1674-1056 2058-3834 |
DOI: | 10.1088/1674-1056/24/12/126301 |