A Necessary and Sufficient Condition for a Constrained Minimum
Let $U$ be an open subset of $\mathbb{R}^n $, $X$ a compact semi-analytic subset of $U$, $(f_0 ,f):U \to \mathbb{R} \times \mathbb{R}^n $ analytic, and $0 \in f(X)$. It is proven that a point $x_0 \in X$ minimizes $f_0 (x)$ subject to $f(x) = 0$ if and only if $x_0 \in X$ minimizes $f_0 (x) + c | {f...
Saved in:
Published in | SIAM journal on optimization Vol. 2; no. 4; pp. 665 - 667 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Philadelphia
Society for Industrial and Applied Mathematics
01.11.1992
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Let $U$ be an open subset of $\mathbb{R}^n $, $X$ a compact semi-analytic subset of $U$, $(f_0 ,f):U \to \mathbb{R} \times \mathbb{R}^n $ analytic, and $0 \in f(X)$. It is proven that a point $x_0 \in X$ minimizes $f_0 (x)$ subject to $f(x) = 0$ if and only if $x_0 \in X$ minimizes $f_0 (x) + c | {f(x)} |^{1/N} $ for all sufficiently large $c$ and $N$. This reduces the constrained minimization problem to a finite number of unconstrained problems. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 content type line 14 |
ISSN: | 1052-6234 1095-7189 |
DOI: | 10.1137/0802033 |