Investigation of vortex-induced vibration of a Π-type bridge girder and its suppression using G-shaped apron combination measure

The Π-type steel-concrete composite girder, a commonly used bridge deck composed of an upper concrete slab and two lower lateral I-side steel girders, often suffers from severe vortex-induced vibrations (VIVs). Herein, the VIV response and triggering mechanism of a Π-type girder are systematically i...

Full description

Saved in:
Bibliographic Details
Published inPhysics of fluids (1994) Vol. 36; no. 8
Main Authors Huang, Lin, Dong, Jiahui, Wang, Qi, Liao, Haili, Li, Mingshui
Format Journal Article
LanguageEnglish
Published Melville American Institute of Physics 01.08.2024
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The Π-type steel-concrete composite girder, a commonly used bridge deck composed of an upper concrete slab and two lower lateral I-side steel girders, often suffers from severe vortex-induced vibrations (VIVs). Herein, the VIV response and triggering mechanism of a Π-type girder are systematically investigated, by adopting 1:50 scale section model wind tunnel tests and flow-field numerical simulations. Afterward, several aerodynamic measures were designed to mitigate the significant VIVs present in the original section, and an effective measure composed of the G-shaped apron and lower central stabilizer plate was found. Numerical simulation results show that the Π-type girder's upper and lower surfaces both exhibit severe vortex shedding, and both contribute significantly to the occurrence of VIVs. Consequently, the aerodynamic measures introduced for the Π-type girder must be able to simultaneously improve the flowing bypassing situation around the upper and lower surfaces of the section, and the G-shaped apron and the lower central stabilizer plate could both accomplish this simultaneously. The results show that the VIV suppression effect of this G-shaped apron combination measure is greatly affected by the height of the G-shaped apron's vertical plate and the height of the lower central stabilizer plate. Only both of them to a certain height, this measure can entirely prevent the Π-type girder from VIVs. After shape optimization, a G-shaped apron combination aerodynamic measure that can eliminate completely the Π-type girder's VIVs at low damping ratios of about 0.5% is proposed, of which the vibration-suppressing effect was verified by wind tunnel testing of 1:20 section model.
ISSN:1070-6631
1089-7666
DOI:10.1063/5.0219497