Storage and Subsequent Reactivation of Phosphate- Accumulating Aerobic Granules

Phosphate-accumulating aerobic granules cultivated in a sequencing batch reactor were composed of inner rod-shaped bacteria aggregates and outer twining filamentous bacteria. The influence of two-month storage under dif- ferent conditions on the storage and subsequent reactivation performance of aer...

Full description

Saved in:
Bibliographic Details
Published inTransactions of Tianjin University Vol. 17; no. 3; pp. 187 - 193
Main Author 黄宇 赵林 谭欣 董涛 李金娟
Format Journal Article
LanguageEnglish
Published Heidelberg Tianjin University 01.06.2011
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Phosphate-accumulating aerobic granules cultivated in a sequencing batch reactor were composed of inner rod-shaped bacteria aggregates and outer twining filamentous bacteria. The influence of two-month storage under dif- ferent conditions on the storage and subsequent reactivation performance of aerobic granules was investigated. After two-month storage the granules sealed at 4 ~C in distilled water or normal saline (named granules A and granules B, respectively) could maintain their characteristics as before, while the granules idled in the reactor at room temperature (named granules C) exhibited decreased properties. During reactivation, granules A and granules B presented almost identical recovery performance, faster than granules C, in terms of phosphorus removal efficiency, mixed liquor sus- pended solids (MLSS), phosphate release and accumulating ability. The results suggest that hermetical storage at low temperature promoted the maintenance of the granular properties and the reviving behaviors of phosphateaccumulating aerobic granules, and storage medium had little influence on the storage and recovery perfomlance.
Bibliography:12-1248/T
phosphate-accumulating aerobic granules; storage; reactivation; granular structure
Phosphate-accumulating aerobic granules cultivated in a sequencing batch reactor were composed of inner rod-shaped bacteria aggregates and outer twining filamentous bacteria. The influence of two-month storage under dif- ferent conditions on the storage and subsequent reactivation performance of aerobic granules was investigated. After two-month storage the granules sealed at 4 ~C in distilled water or normal saline (named granules A and granules B, respectively) could maintain their characteristics as before, while the granules idled in the reactor at room temperature (named granules C) exhibited decreased properties. During reactivation, granules A and granules B presented almost identical recovery performance, faster than granules C, in terms of phosphorus removal efficiency, mixed liquor sus- pended solids (MLSS), phosphate release and accumulating ability. The results suggest that hermetical storage at low temperature promoted the maintenance of the granular properties and the reviving behaviors of phosphateaccumulating aerobic granules, and storage medium had little influence on the storage and recovery perfomlance.
ISSN:1006-4982
1995-8196
DOI:10.1007/s12209-011-1555-y