Optimization of DE-QG TFET using novel CIP and DCT techniques

In this paper, two novel techniques Channel-Intermediate-Pocket (CIP) and Dual-Channel-Type (DCT) are proposed to optimize the Drain Engineered-Quadruple Gate TFET (DE-QG TFET). The proposed DCT technique is realized by making half of the channel area with lightly doped n- and the other half with th...

Full description

Saved in:
Bibliographic Details
Published inMicroelectronics Vol. 144; p. 106097
Main Authors T.S., Manivannan, Pasupathy, K.R., Shaikh, Mohd Rizwan Uddin, Lakshminarayanan, G.
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.02.2024
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In this paper, two novel techniques Channel-Intermediate-Pocket (CIP) and Dual-Channel-Type (DCT) are proposed to optimize the Drain Engineered-Quadruple Gate TFET (DE-QG TFET). The proposed DCT technique is realized by making half of the channel area with lightly doped n- and the other half with the lightly doped p- channel. The CIP technique is implemented by inserting a pocket exactly at the junction of lightly doped n- &p- channel regions. Using the proposed techniques, the Ioff is reduced by ∼3.3 times (2 × 10-17 A/μm), the Iamb is reduced by a magnitude of two orders (2.39 × 10-17 A/μm) and by using the Dual-Oxide technique, the Ion is increased by 5 times (0.641 mA/μm) that of the conventional DE-QG TFET. Also, a steeper subthreshold swing (SS) of ∼57 mV/dec and one order of magnitude increase in the Ion/Ioff ratio of 3.19 × 1013 is achieved. Further, the peak overshoot voltage is suppressed by 86%, the transconductance (gm) is increased by ∼3 times (757 μA/V), and both the cut-off frequency (fT) and the Gain Bandwidth Product (GBW) are increased by ∼2.3 times (49 GHz & 5.2 GHz) respectively. The proposed device is mainly targeted towards Analog/RF applications.
ISSN:1879-2391
1879-2391
DOI:10.1016/j.mejo.2024.106097