Growth and characterization of GaAs/InxGa1-xAs/GaAs axial nanowire heterostructures with symmetrical heterointerfaces
We report on the Au-assisted vapour-liquid-solid (VLS) growth of GaAs/InxGal xAs/GaAs (0.2 ≤ x ≤1) axial double-heterostructure nanowires on GaAs ( 111 ) B substrates via the metal-organic chemical vapor deposition (MOCVD) technique. The influence of the indium (In) content in an Au particle on the...
Saved in:
Published in | 中国物理B:英文版 no. 6; pp. 459 - 464 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
01.06.2013
|
Online Access | Get full text |
Cover
Loading…
Summary: | We report on the Au-assisted vapour-liquid-solid (VLS) growth of GaAs/InxGal xAs/GaAs (0.2 ≤ x ≤1) axial double-heterostructure nanowires on GaAs ( 111 ) B substrates via the metal-organic chemical vapor deposition (MOCVD) technique. The influence of the indium (In) content in an Au particle on the morphology of nanowires is investigated systematically. A short period of pre-introduced In precursor before the growth of InxGal xAs segment, coupled with a group III precursor interruption, is conducive to obtaining symmetrical heterointerfaces as well as the desired In/Ga ratio in the InxGa1-xAs section. The nanowire morphology, such as kinking and tapering, are thought to be related to the In composition in the catalyst alloy as well as the VLS growth mechanism. |
---|---|
Bibliography: | nanostructures, nanowire heterostructures, metal-organic chemical vapor deposition 11-5639/O4 We report on the Au-assisted vapour-liquid-solid (VLS) growth of GaAs/InxGal xAs/GaAs (0.2 ≤ x ≤1) axial double-heterostructure nanowires on GaAs ( 111 ) B substrates via the metal-organic chemical vapor deposition (MOCVD) technique. The influence of the indium (In) content in an Au particle on the morphology of nanowires is investigated systematically. A short period of pre-introduced In precursor before the growth of InxGal xAs segment, coupled with a group III precursor interruption, is conducive to obtaining symmetrical heterointerfaces as well as the desired In/Ga ratio in the InxGa1-xAs section. The nanowire morphology, such as kinking and tapering, are thought to be related to the In composition in the catalyst alloy as well as the VLS growth mechanism. |
ISSN: | 1674-1056 2058-3834 |
DOI: | 10.1088/1674-1056/22/6/066101 |