Generation of radical species in CVD grown pristine and N-doped solid carbon spheres using H2 and Ar as carrier gases

Solid carbon spheres (CSs, d approximately 200 nm) were synthesized (yield, <40%) in a vertically oriented chemical vapor deposition (CVD) reactor using acetylene as a carbon source and Ar or H2 as the carrier gas. The CSs synthesized in the presence of H2 exhibited a broader thermal gravimetric...

Full description

Saved in:
Bibliographic Details
Published inRSC advances Vol. 7; no. 34; pp. 21187 - 21195
Main Authors Mutuma, Bridget K, Matsoso, Boitumelo J, Ranganathan, Kamalakannan, Keartland, Jonathan M, Wamwangi, Daniel, Coville, Neil J
Format Journal Article
LanguageEnglish
Published 01.04.2017
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Solid carbon spheres (CSs, d approximately 200 nm) were synthesized (yield, <40%) in a vertically oriented chemical vapor deposition (CVD) reactor using acetylene as a carbon source and Ar or H2 as the carrier gas. The CSs synthesized in the presence of H2 exhibited a broader thermal gravimetric derivative curve and a narrower paramagnetic signal than the CSs synthesized in Ar. Post synthesis doping of both types of CSs with nitrogen was achieved by passing acetonitrile at 800 degree C for 1 h over the CSs in a CVD reactor. The N-doped CSs (NCSs) synthesized under both H2 and Ar displayed an increase in ID/IG ratios as obtained from Raman spectroscopy and showed an increase in the paramagnetic signal due to the presence of nitrogen induced defects compared to the undoped CSs. The NCSs synthesized in H2 had less graphitic-N (22%) than those produced in Ar (50%). The presence of a higher percentage of pyridinic-N and pyrrolic-N for the NCSs prepared with H2 as carrier gas suggested H2 etching effects on the CSs. Further, the N-doped carbon spheres obtained in the presence of H2 gave a higher N/C ratio (5.0) than in the presence of Ar (3.7). The introduction of edge defects and paramagnetic centers in CSs in the presence of H2 gas without the aid of a metal catalyst opens up a platform for regulating surface and catalytic reactions of CSs.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2046-2069
DOI:10.1039/c7ra03142d