Synthetic data generation of vibration signals at different speed and load conditions of transmissions utilizing generative adversarial networks

Condition monitoring of machines and powertrain components is an essential part of ensuring reliability and product safety in many industries. The monitored machines and components are often divided into different condition classes as well as classified using machine learning methods. In order to en...

Full description

Saved in:
Bibliographic Details
Published inTechnisches Messen Vol. 90; no. 10; pp. 639 - 649
Main Authors König, Timo, Wagner, Fabian, Bäßler, Robin, Kley, Markus, Liebschner, Marcus
Format Journal Article
LanguageEnglish
Published De Gruyter 26.10.2023
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Condition monitoring of machines and powertrain components is an essential part of ensuring reliability and product safety in many industries. The monitored machines and components are often divided into different condition classes as well as classified using machine learning methods. In order to enable classification with machine learning algorithms, the acquisition of a sufficient amount of data from each condition class is essential. In reality, the collection of data for faulty system states turns out to be much more difficult, therefore in many use cases balanced data sets are not available. However, when classifying faulty states, an identical number of data per class is of great importance. This problem can be counteracted with synthetic data generation. Generative Adversarial Networks (GAN) are a suitable approach to generate synthetic data based on real measured data. In most cases of synthetic data generation, different damage cases, e.g. from a transmission, are simulated, but a generation of synthetic data is not performed at different operating conditions. However, different speeds and torques are a reality when monitoring, as the drive systems operate under changing operating conditions. Therefore, in the context of this paper, synthetic data generation at different operating states is investigated in order to implement a condition monitoring system for good and bad system conditions which includes different operating states. So, vibration data is acquired at different operating conditions of a transmission on a drive test rig and relevant features are highlighted using a suitable signal pre-processing method. The features, caused by different operating conditions, can also be generated synthetically by GAN. Therefore, it is possible to achieve a similar classification accuracy by integrating synthetically generated data as with real data, which makes the synthetic data generation a viable solution for extending existing data sets.
ISSN:0171-8096
2196-7113
DOI:10.1515/teme-2023-0001