On simplicity of intermediate -algebras
We prove simplicity of all intermediate $C^{\ast }$ -algebras $C_{r}^{\ast }(\unicode[STIX]{x1D6E4})\subseteq {\mathcal{B}}\subseteq \unicode[STIX]{x1D6E4}\ltimes _{r}C(X)$ in the case of minimal actions of $C^{\ast }$ -simple groups $\unicode[STIX]{x1D6E4}$ on compact spaces $X$ . For this, we use...
Saved in:
Published in | Ergodic theory and dynamical systems Vol. 40; no. 12; pp. 3181 - 3187 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Cambridge
Cambridge University Press
01.12.2020
|
Subjects | |
Online Access | Get full text |
ISSN | 0143-3857 1469-4417 |
DOI | 10.1017/etds.2019.34 |
Cover
Loading…
Summary: | We prove simplicity of all intermediate
$C^{\ast }$
-algebras
$C_{r}^{\ast }(\unicode[STIX]{x1D6E4})\subseteq {\mathcal{B}}\subseteq \unicode[STIX]{x1D6E4}\ltimes _{r}C(X)$
in the case of minimal actions of
$C^{\ast }$
-simple groups
$\unicode[STIX]{x1D6E4}$
on compact spaces
$X$
. For this, we use the notion of stationary states, recently introduced by Hartman and Kalantar [Stationary
$C^{\ast }$
-dynamical systems.
Preprint
, 2017,
arXiv:1712.10133
]. We show that the Powers’ averaging property holds for the reduced crossed product
$\unicode[STIX]{x1D6E4}\ltimes _{r}{\mathcal{A}}$
for any action
$\unicode[STIX]{x1D6E4}\curvearrowright {\mathcal{A}}$
of a
$C^{\ast }$
-simple group
$\unicode[STIX]{x1D6E4}$
on a unital
$C^{\ast }$
-algebra
${\mathcal{A}}$
, and use it to prove a one-to-one correspondence between stationary states on
${\mathcal{A}}$
and those on
$\unicode[STIX]{x1D6E4}\ltimes _{r}{\mathcal{A}}$
. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 0143-3857 1469-4417 |
DOI: | 10.1017/etds.2019.34 |