Dry sliding wear behavior of EN25 Steel treated by different quenching media

The present investigation aims to study the effect of heat treatment by quenching in different quenching media (salt water, water and oil) following by tempering on wear resistance of EN25 steel. EN25 steel is an alloy of medium carbon low alloy steel which is used for many applications requiring hi...

Full description

Saved in:
Bibliographic Details
Published inJournal of Engineering Vol. 23; no. 10; pp. 72 - 84
Main Author Ahmad, Bassam Ali
Format Journal Article
LanguageArabic
English
Published Baghdad, Iraq University of Baghdad, College of Engineering 01.10.2017
University of Baghdad
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The present investigation aims to study the effect of heat treatment by quenching in different quenching media (salt water, water and oil) following by tempering on wear resistance of EN25 steel. EN25 steel is an alloy of medium carbon low alloy steel which is used for many applications requiring high tensile strength and wear resistance such as connecting rods, adapters and in power sectors extensively. The specimens are machined to 20 mm in length and 10 mm in diameter. This study is done by two stages: The first stage is done by austenitizing EN25 steel to 850 for 1 hr by quenching the specimens in three different quenching media and then tempered at 300 in air. While the second stage is performed by wear test. Dry sliding wear test is done by using pin –on-disc technique by varying the loads as 5, 10, 15, 20 and 25 N, also varying the time as 5, 10, 15, 20, 25 and 30 min respectively. The microstructure examination, hardness and followed roughness tests are also done for the specimens before and after wear test. The results of this work showed that an improving in wear resistance and hardness for the specimen quenched by salt water more than for water and oil. At the same time the roughness decreasing for the specimen quenched by salt water more than for water and oil
ISSN:1726-4073
2520-3339
DOI:10.31026/j.eng.2017.10.06