Significance of honeybee pollination in increasing seed yield of Trifolium alexandrinum (Fabales: Fabaceae) and its impact on economic sustainability of smallholder farmers

A major limitation to producing high seed yields in berseem clover (Trifolium alexandrinum L.) is failure to set seed, predominantly due to lack of pollination. Despite the importance of berseem clover as a leading forage legume, the contribution of pollinators to seed set is scarce. In Pakistan, th...

Full description

Saved in:
Bibliographic Details
Published inJournal of economic entomology
Main Authors Tufail, Muhammad Shoaib, Krebs, Gaye L, Southwell, Alison, Piltz, John W, Wynn, Peter C, Cook, David F
Format Journal Article
LanguageEnglish
Published England 11.10.2024
Subjects
Online AccessGet more information

Cover

Loading…
More Information
Summary:A major limitation to producing high seed yields in berseem clover (Trifolium alexandrinum L.) is failure to set seed, predominantly due to lack of pollination. Despite the importance of berseem clover as a leading forage legume, the contribution of pollinators to seed set is scarce. In Pakistan, the honeybee population is declining mainly because of the extensive use of neonicotinoid pesticides and habitat fragmentation. This, combined with the region's harsh environment and the use of inferior, locally bred genotypes, has resulted in low seed yields. Insufficient seed availability leads to limited forage supply, resulting in poor livestock nutrition, which subsequently impacts livestock health and productivity, and reduces farmers' income. The present study estimated the seed production of 3 berseem clover genotypes resulting from honeybees [Apis mellifera L. (Hymenoptera: Apidae)] pollination in 2 growing seasons (2012-2014) in the central Punjab region of Pakistan. Experiments had 2 pollination treatments (open pollination and honeybee inclusion) and 3 seed genotypes, viz. farmer own-saved, market, and the improved variety cultivars. For both growing seasons, honeybee pollination resulted in significant increases in seed yields ranging from 35% to 67%, regardless of seed genotype. With the exception of the number of seed heads/m2, all seed yield parameters also increased significantly in response to honeybee inclusion. The combination of improved variety and honeybee inclusion resulted in the production of a maximum number of seeds per head (45.3), 1,000-seed weight (3.7 g), and estimated seed yield (375.5 kg/ha). In addition, the increase in estimated net income of seed ranged from PKR 82,485 Rs/ha (US$844/ha) to PKR 168,975 Rs/ha (US$1728/ha) with the use of honeybees as an insect pollinator across all the seed genotypes. Honeybee pollination has broader implications for mixed farming systems by playing a key role in preserving biodiversity and promoting sustainable agriculture. It also enhances the quality and quantity of berseem crops by increasing the production of high-quality seeds and forage leading to improved livestock productivity and family food security which strengthens the economic resilience of rural communities.
ISSN:1938-291X
DOI:10.1093/jee/toae222