Structure modification of nonsteroidal brassinolide-like compound, NSBR1
Brassinolide (BL) is a possible plant growth regulator in agriculture, but the presence of a steroid skeleton hampers the field application of BL in agriculture because of its high synthetic cost. We discovered NSBR1 as the first nonsteroidal BL-like compound using in silico technology. Searching fo...
Saved in:
Published in | Bioscience, biotechnology, and biochemistry Vol. 86; no. 8; pp. 1004 - 1012 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
22.07.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Brassinolide (BL) is a possible plant growth regulator in agriculture, but the presence of a steroid skeleton hampers the field application of BL in agriculture because of its high synthetic cost. We discovered NSBR1 as the first nonsteroidal BL-like compound using in silico technology. Searching for more potent BL-like compounds, we modified the structure of NSBR1 with respect to two benzene rings and the piperazine ring. The activity of synthesized compounds was measured in Arabidopsis hypocotyl elongation. The propyl group of butyryl moiety of NSBR1 was changed to various alkyl groups, such as straight, branched, and cyclic alkyl chains. Another substituent, F, at the ortho-position of the B-ring toward the piperazine ring was changed to other substituents. A methyl group was introduced to the piperazine ring. Most of the newly synthesized compounds with the 3,4-(OH)2 group at the A-ring significantly elongated the hypocotyl of Arabidopsis. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1347-6947 1347-6947 |
DOI: | 10.1093/bbb/zbac074 |