Core Reversal in Vertically Coupled Vortices: Simulation and Experimental Study
This study conducts a comprehensive investigation into the reversal mechanism of magnetic vortex cores in a nanopillar system composed of two coupled ferromagnetic dots under zero magnetic field conditions. The research employs a combination of experimental and simulation methods to gain a deeper un...
Saved in:
Published in | IEEE transactions on nanotechnology Vol. 23; pp. 549 - 553 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | This study conducts a comprehensive investigation into the reversal mechanism of magnetic vortex cores in a nanopillar system composed of two coupled ferromagnetic dots under zero magnetic field conditions. The research employs a combination of experimental and simulation methods to gain a deeper understanding of the dynamics of magnetic vortex cores. The findings reveal that by applying a constant direct current, the orientation of the vortex cores can be manipulated, resulting in a switch in one of the dots at a specific current value. The micromagnetic simulations provide evidence that this switch is a consequence of a deformation in the vortex profile caused by the increasing velocity of the vortex cores resulting from the constant amplitude of the trajectory as frequency increases. These findings offer valuable new insights into the coupled dynamics of magnetic vortex cores and demonstrate the feasibility of manipulating their orientation using direct currents under zero magnetic field conditions. The results of this study have potential implications for the development of vortex-based non-volatile memory technologies. |
---|---|
ISSN: | 1536-125X 1941-0085 |
DOI: | 10.1109/TNANO.2024.3420249 |