Improved Synthesis and Coordination Behavior of 1H-1,2,3-Triazole-4,5-dithiolates (tazdt2−) with NiII, PdII, PtII and CoIII

A new synthetic route to 1H-1,2,3-triazole-4,5-dithiols (tazdtH2) as ligands for the coordination of NiII, PdII, PtII and CoIII via the dithiolate unit is presented. Different N-protective groups were introduced with the corresponding azide via a click-like copper-catalyzed azide-alkyne [3 + 2] cycl...

Full description

Saved in:
Bibliographic Details
Published inChemistry an international journal Vol. 5; no. 2; pp. 1271 - 1287
Main Authors Pardemann, Nils, Villinger, Alexander, Seidel, Wolfram W.
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 17.05.2023
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:A new synthetic route to 1H-1,2,3-triazole-4,5-dithiols (tazdtH2) as ligands for the coordination of NiII, PdII, PtII and CoIII via the dithiolate unit is presented. Different N-protective groups were introduced with the corresponding azide via a click-like copper-catalyzed azide-alkyne [3 + 2] cycloaddition (CuAAC) and fully characterized by NMR spectroscopy. Possible isomers were isolated and an alternative synthetic route was investigated and discussed. After removal of the benzyl protective groups on sulfur by in situ-generated sodium naphthalide, complexes at the [(dppe)M] (M = Ni, Pd, Pt), [(PPh3)2Pt] and [(η5-C5H5)Co] moieties were prepared and structurally characterized by XRD analysis. In this process, the by-products 11 and 12 as monothiolate derivatives were isolated and structurally characterized as well. With regioselective coordination via the dithiolate unit, the electronic influence of different metals or protective groups at N was investigated and compared spectroscopically by means of UV/Vis spectroscopy and cyclic voltammetry. Complex [(η5-C5H5)Co(5c)] (10), is subject to a dimerization equilibrium, which was investigated by temperature-dependent NMR and UV/Vis spectroscopy (solution and solid-state). The thermodynamic parameters of the monomer/dimer equilibrium were derived.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2624-8549
2624-8549
DOI:10.3390/chemistry5020086