Improved Teflon lift-off for droplet microarray generation and single-cell separation on digital microfluidic chips

Droplet microarrays (DMAs) leveraging wettability differences are instrumental in digital immunoassays, single-cell analysis, and high-throughput screening. This study introduces an enhanced Teflon lift-off process to fabricate hydrophilic-hydrophobic patterns on a digital microfluidic (DMF) chip, t...

Full description

Saved in:
Bibliographic Details
Published inLab on a chip
Main Authors Shen, Chuanjie, Tong, Zhaoduo, Xu, Xin, Mao, Hongju
Format Journal Article
LanguageEnglish
Published England 20.09.2024
Online AccessGet full text

Cover

Loading…
More Information
Summary:Droplet microarrays (DMAs) leveraging wettability differences are instrumental in digital immunoassays, single-cell analysis, and high-throughput screening. This study introduces an enhanced Teflon lift-off process to fabricate hydrophilic-hydrophobic patterns on a digital microfluidic (DMF) chip, thereby integrating DMAs with DMF technology. By employing DMF for droplet manipulation and utilizing wettability differences, the automated generation of high-throughput DMAs was achieved. The volume of the microdroplets ranged from picoliters to nanoliters. For droplets with a diameter of 150 μm, the array density reached up to 1282 cm . We systematically investigated the influence of various DMF parameters on the formation of DMAs and applied this technique to particle distribution, achieving a single-cell isolation rate of approximately 30%. We believe that this method will be a potent tool to enhance the capabilities of DMAs and DMF technology and extend their applicability across more fields.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1473-0197
1473-0189
1473-0189
DOI:10.1039/d4lc00630e