Efficient, High Power, Wide-Aperture Single Emitter Diode Lasers Emitting at 915 nm

We present single emitter laser diodes with high optical output power (<inline-formula> <tex-math notation="LaTeX">\boldsymbol {P} {_{\text {out}}} </tex-math></inline-formula>), conversion efficiency (<inline-formula> <tex-math notation="LaTeX"&g...

Full description

Saved in:
Bibliographic Details
Published inIEEE photonics technology letters Vol. 36; no. 16; pp. 977 - 980
Main Authors Arslan, Seval, King, Ben, Della Casa, Pietro, Martin, Dominik, Thies, Andreas, Knigge, Andrea, Crump, Paul
Format Journal Article
LanguageEnglish
Published New York IEEE 15.08.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:We present single emitter laser diodes with high optical output power (<inline-formula> <tex-math notation="LaTeX">\boldsymbol {P} {_{\text {out}}} </tex-math></inline-formula>), conversion efficiency (<inline-formula> <tex-math notation="LaTeX">\boldsymbol {\eta } {_{\text {E}}} </tex-math></inline-formula>), and lateral beam quality in quasi-continuous-wave (QCW) and continuous-wave (CW) operations enabled by using very wide stripe width (ranging from 400 to 1500<inline-formula> <tex-math notation="LaTeX">\mu </tex-math></inline-formula>m) and laterally structured p-side contact to prevent higher order and unwanted ring modes. We show that the maximum QCW <inline-formula> <tex-math notation="LaTeX">\boldsymbol {P} {_{\text {out}}} </tex-math></inline-formula> increases for wider stripe and <inline-formula> <tex-math notation="LaTeX">\boldsymbol {P} {_{\text {out}}} </tex-math></inline-formula> of <inline-formula> <tex-math notation="LaTeX">\boldsymbol {\sim }~290 </tex-math></inline-formula>W (limited by facet failure) is obtained at <inline-formula> <tex-math notation="LaTeX">\boldsymbol {\eta } {_{\text {E}}} =60 </tex-math></inline-formula>% for 1500<inline-formula> <tex-math notation="LaTeX">\mu </tex-math></inline-formula>m stripes using 500<inline-formula> <tex-math notation="LaTeX">\mu </tex-math></inline-formula>s pulse width and 10Hz repetition-rate at a heatsink temperature of <inline-formula> <tex-math notation="LaTeX">\boldsymbol {T} {_{\text {HS}}} =25 </tex-math></inline-formula> °C. In contrast, the maximum CW <inline-formula> <tex-math notation="LaTeX">\boldsymbol {P} {_{\text {out}}} </tex-math></inline-formula> of 71W (limited by the available cooling of the test set-up) at <inline-formula> <tex-math notation="LaTeX">\boldsymbol {\eta } {_{\text {E}}} =59 </tex-math></inline-formula>% is obtained for 1000<inline-formula> <tex-math notation="LaTeX">\mu </tex-math></inline-formula>m stripes, with lateral-beam-parameter-product (BPPLat.) < 75mm<inline-formula> <tex-math notation="LaTeX">\boldsymbol {\cdot } </tex-math></inline-formula>mrad, which is suitable for coupling into 1mm core 0.15NA fiber.
ISSN:1041-1135
1941-0174
DOI:10.1109/LPT.2024.3419552