Cramér-Rao Bounds for Near-Field Sensing: A Generic Modular Architecture

A generic modular array architecture is proposed, featuring uniform/non-uniform subarray layouts that allows for flexible deployment. The bistatic near-field sensing system is considered, where the target is located in the near-field of the whole modular array and the far-field of each subarray. The...

Full description

Saved in:
Bibliographic Details
Published inIEEE wireless communications letters Vol. 13; no. 8; pp. 2205 - 2209
Main Authors Meng, Chunwei, Ma, Dingyou, Chen, Xu, Feng, Zhiyong, Liu, Yuanwei
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 01.08.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:A generic modular array architecture is proposed, featuring uniform/non-uniform subarray layouts that allows for flexible deployment. The bistatic near-field sensing system is considered, where the target is located in the near-field of the whole modular array and the far-field of each subarray. Then, the closed-form expressions of Cramér-Rao bounds (CRBs) for range and angle estimations are derived based on the hybrid spherical and planar wave model (HSPM). Simulation results validate the accuracy of the derived closed-form CRBs and demonstrate that: i) The HSPM with varying angles of arrival (AoAs) between subarrays can reduce the CRB for range estimation compared to the traditional HSPM with shared AoA; and ii) The proposed generic modular architecture with subarrays positioned closer to the edges can significantly reduce the CRBs compared to the traditional modular architecture with uniform subarray layout, when the array aperture is fixed.
ISSN:2162-2337
2162-2345
DOI:10.1109/LWC.2024.3406577