Stomatal and Non-Stomatal Leaf Responses during Two Sequential Water Stress Cycles in Young Coffea canephora Plants

Understanding the dynamics of physiological changes involved in the acclimation responses of plants after their exposure to repeated cycles of water stress is crucial to selecting resilient genotypes for regions with recurrent drought episodes. Under such background, we tried to respond to questions...

Full description

Saved in:
Bibliographic Details
Published inStresses Vol. 4; no. 3; pp. 575 - 597
Main Authors Baroni, Danilo F., de Souza, Guilherme A. R., Bernado, Wallace de P., Santos, Anne R., Barcellos, Larissa C. de S., Barcelos, Letícia F. T., Correia, Laísa Z., de Almeida, Claudio M., Verdin Filho, Abraão C., Rodrigues, Weverton P., Ramalho, José C., Rakočević, Miroslava, Campostrini, Eliemar
Format Journal Article
LanguageEnglish
Published Pisa MDPI AG 09.09.2024
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Understanding the dynamics of physiological changes involved in the acclimation responses of plants after their exposure to repeated cycles of water stress is crucial to selecting resilient genotypes for regions with recurrent drought episodes. Under such background, we tried to respond to questions as: (1) Are there differences in the stomatal-related and non-stomatal responses during water stress cycles in different clones of Coffea canephora Pierre ex A. Froehner? (2) Do these C. canephora clones show a different response in each of the two sequential water stress events? (3) Is one previous drought stress event sufficient to induce a kind of “memory” in C. canephora? Seven-month-old plants of two clones (’3V’ and ‘A1’, previously characterized as deeper and lesser deep root growth, respectively) were maintained well-watered (WW) or fully withholding the irrigation, inducing soil water stress (WS) until the soil matric water potential (Ψmsoil) reached ≅ −0.5 MPa (−500 kPa) at a soil depth of 500 mm. Two sequential drought events (drought-1 and drought-2) attained this Ψmsoil after 19 days and were followed by soil rewatering until a complete recovery of leaf net CO2 assimilation rate (Anet) during the recovery-1 and recovery-2 events. The leaf gas exchange, chlorophyll a fluorescence, and leaf reflectance parameters were measured in six-day frequency, while the leaf anatomy was examined only at the end of the second drought cycle. In both drought events, the WS plants showed reduction in stomatal conductance and leaf transpiration. The reduction in internal CO2 diffusion was observed in the second drought cycle, expressed by increased thickness of spongy parenchyma in both clones. Those stomatal and anatomical traits impacted decreasing the Anet in both drought events. The ‘3V’ was less influenced by water stress than the ‘A1’ genotype in Anet, effective quantum yield in PSII photochemistry, photochemical quenching, linear electron transport rate, and photochemical reflectance index during the drought-1, but during the drought-2 event such an advantage disappeared. Such physiological genotype differences were supported by the medium xylem vessel area diminished only in ‘3V’ under WS. In both drought cycles, the recovery of all observed stomatal and non-stomatal responses was usually complete after 12 days of rewatering. The absence of photochemical impacts, namely in the maximum quantum yield of primary photochemical reactions, photosynthetic performance index, and density of reaction centers capable of QA reduction during the drought-2 event, might result from an acclimation response of the clones to WS. In the second drought cycle, the plants showed some improved responses to stress, suggesting “memory” effects as drought acclimation at a recurrent drought.
ISSN:2673-7140
2673-7140
DOI:10.3390/stresses4030037