Discrepancies in the in vitro and in vivo role of scavenger receptors in clearance of nanoparticles by Kupffer cells

Nanoparticles are recognized and cleared by Kupffer cells (KCs) in the liver. This process complicates the development of targeted nanoparticles because of significant reduction of number of nanoparticles that can reach target tissues. Macrophage scavenger receptor SR type AI/II is the central phago...

Full description

Saved in:
Bibliographic Details
Published inPrecision nanomedicine Vol. 1; no. 1; pp. 76 - 84
Main Authors Wang, Guankui, Groman, Ernest, Simberg, Dmitri
Format Journal Article
LanguageEnglish
Published Andover House Inc 01.05.2018
Online AccessGet full text

Cover

Loading…
More Information
Summary:Nanoparticles are recognized and cleared by Kupffer cells (KCs) in the liver. This process complicates the development of targeted nanoparticles because of significant reduction of number of nanoparticles that can reach target tissues. Macrophage scavenger receptor SR type AI/II is the central phagocytic receptor that has been shown to promote in vitro uptake of many nanoparticle types. In this paper, the authors set out to clarify the role of SR-AI/II in the in vivo liver clearance of 10kDa dextran superparamagnetic iron oxide (SPIO) Feridex-IV® and 20kDa dextran-coated SPIO nanoworms (SPIO NWs). Feridex showed efficient SR-AI/II-dependent uptake by isolated KCs in vitro, whereas SPIO NWs showed no uptake by KCs. Both Feridex and SPIO NWs showed a very short and nearly identical circulation half-life and efficient uptake by KCs in vivo. The SR-AI/II inhibitor, polyinosinic acid, prolonged the circulation half-life of both Feridex and SPIO NWs, but did not reduce the KC uptake. The circulation half-life and KC uptake of Feridex and SPIO NWs were identical in SR-AI/II-deficient mice and wild-type mice. These data suggest: (1) there is a limited correlation between in vitro and in vivo uptake mechanisms of nanoparticles in KCs; and (2) redundant, SR-AI/II independent mechanisms play a significant role in the nanoparticle recognition by KCs in vivo. Understanding the complexity of nanoparticle clearance assays and mechanisms is an important step to improving the design of “stealthy” nanoparticles.
ISSN:2639-9431
2639-9431
DOI:10.29016/180430.1