Estimates of maximal functions measuring local smoothness

Letη be a nondecreasing function on (0, 1] such thatη(t)/t decreases andη(+0)=0. Letf ∈L(In) (I≡[0,1]. Set, where the supremum is taken over all cubes containing the pointx. Forη=tα (0<α≤1) this definition was given by A.Calderón.In the paper we prove estimates of the maximal functions, along wit...

Full description

Saved in:
Bibliographic Details
Published inAnalysis mathematica (Budapest) Vol. 25; no. 1; pp. 277 - 300
Main Authors Kolyada, V. I., Коляда, В. И.
Format Journal Article
LanguageEnglish
Published Heidelberg Springer Nature B.V 1999
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Letη be a nondecreasing function on (0, 1] such thatη(t)/t decreases andη(+0)=0. Letf ∈L(In) (I≡[0,1]. Set, where the supremum is taken over all cubes containing the pointx. Forη=tα (0<α≤1) this definition was given by A.Calderón.In the paper we prove estimates of the maximal functions, along with some embedding theorems. In particular, we prove the following Sobolev type inequality: if, then. Furthermore, we obtain estimates of in terms of theLp-modulus of continuity off. We find sharp conditions for to belong toLp(In) and the Orlicz classϕ(L), too.Пустьη-неубываюшая функция на (0,1] такая, чтоη(t)/t убывает иη(+0)=0. Пустьf ∈L(In) (I≡[0,1]). Положим где верхняя грань берется по всем кубам, содержашим точкуx. Дляη=tα (0<α<1) Это определение было дано А. Кальдероном.В статье иэучаются оценки максимальных функций, а также некоторые теоремы вложения. Докаэываются неравенства типа Соболева: если, то Далее, получены оценки в терминахLp-модуля непрерывностиf. Найдены точные условия для принадлежности пространствамLq(In) и классамϕ(L).
AbstractList Letη be a nondecreasing function on (0, 1] such thatη(t)/t decreases andη(+0)=0. Letf ∈L(In) (I≡[0,1]. Set, where the supremum is taken over all cubes containing the pointx. Forη=tα (0<α≤1) this definition was given by A.Calderón.In the paper we prove estimates of the maximal functions, along with some embedding theorems. In particular, we prove the following Sobolev type inequality: if, then. Furthermore, we obtain estimates of in terms of theLp-modulus of continuity off. We find sharp conditions for to belong toLp(In) and the Orlicz classϕ(L), too.Пустьη-неубываюшая функция на (0,1] такая, чтоη(t)/t убывает иη(+0)=0. Пустьf ∈L(In) (I≡[0,1]). Положим где верхняя грань берется по всем кубам, содержашим точкуx. Дляη=tα (0<α<1) Это определение было дано А. Кальдероном.В статье иэучаются оценки максимальных функций, а также некоторые теоремы вложения. Докаэываются неравенства типа Соболева: если, то Далее, получены оценки в терминахLp-модуля непрерывностиf. Найдены точные условия для принадлежности пространствамLq(In) и классамϕ(L).
Author Коляда, В. И.
Kolyada, V. I.
Author_xml – sequence: 1
  givenname: V. I.
  surname: Kolyada
  fullname: Kolyada, V. I.
– sequence: 2
  givenname: В. И.
  surname: Коляда
  fullname: Коляда, В. И.
BookMark eNpFUEtLw0AYXKSCafXiLwh4E6LfPrKPo5ZWhYIXBW8h2exqSrJb90tA_72RCp6GYYYZZpZkEWJwhFxSuKEA6vZ-C8yAFoKdkIyWWhdM8bcFyYByXnBdsjOyRNwDgJGaZ8RscOyGenSYR58P9ddM-txPwY5dDJgPrsYpdeE976OdFRxiHD-CQzwnp77u0V384Yq8bjcv68di9_zwtL7bFZYqMRZt66WlwKlWVhlOm1oqEFKz0jVGqVK2jHHZtN5wx6Q32ppGNkIaL5TwrOQrcnXMPaT4OTkcq32cUpgrK6a0NFwpULPr-uiyKSIm56tDmqek74pC9XtN9X8N_wGkjFaY
CitedBy_id crossref_primary_10_1007_s11253_010_0363_1
crossref_primary_10_1134_S0001434609110200
crossref_primary_10_4213_sm7828
crossref_primary_10_4213_mzm10600
crossref_primary_10_1070_SM2012v203n07ABEH004253
crossref_primary_10_3103_S1066369X0805006X
crossref_primary_10_4213_mzm8526
crossref_primary_10_1515_forum_2010_003
crossref_primary_10_1007_s11006_005_0088_x
crossref_primary_10_4213_mzm2550
crossref_primary_10_1090_tran_8632
crossref_primary_10_1134_S0001434615030098
Cites_doi 10.4064/sm-44-6-563-582
10.4064/sm-62-1-75-92
10.1007/978-3-642-65711-5
10.1090/memo/0293
ContentType Journal Article
Copyright Akadémiai Kiadó 1999.
Copyright_xml – notice: Akadémiai Kiadó 1999.
DBID AAYXX
CITATION
DOI 10.1007/BF02908442
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Mathematics
EISSN 1588-273X
EndPage 300
ExternalDocumentID 10_1007_BF02908442
GroupedDBID --K
-52
-5D
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06D
0R~
0VY
1B1
1N0
1SB
2.D
203
23M
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
78A
8TC
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAEOY
AAHNG
AAIAL
AAJBT
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYXX
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIPQ
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACSNA
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEARS
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AI.
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BAPOH
BBWZM
BDATZ
BGNMA
CAG
CITATION
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LLZTM
M4Y
MA-
MET
MKB
N2Q
NB0
NDZJH
NPVJJ
NQ-
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P9R
PF0
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RIG
RKA
RNI
ROL
RPX
RPZ
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDD
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VH1
W23
W48
WK8
YLTOR
Z45
ZMTXR
ZWQNP
~EX
ID FETCH-LOGICAL-c174t-ddf6c103187c7931ba67046825eb97756d2236bdf93e26f98c9b6b469f474f253
ISSN 0133-3852
IngestDate Thu Oct 10 18:18:38 EDT 2024
Thu Sep 12 16:47:52 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c174t-ddf6c103187c7931ba67046825eb97756d2236bdf93e26f98c9b6b469f474f253
PQID 2786937707
PQPubID 2043833
PageCount 24
ParticipantIDs proquest_journals_2786937707
crossref_primary_10_1007_BF02908442
PublicationCentury 1900
PublicationDate 1999-00-00
PublicationDateYYYYMMDD 1999-01-01
PublicationDate_xml – year: 1999
  text: 1999-00-00
PublicationDecade 1990
PublicationPlace Heidelberg
PublicationPlace_xml – name: Heidelberg
PublicationTitle Analysis mathematica (Budapest)
PublicationYear 1999
Publisher Springer Nature B.V
Publisher_xml – name: Springer Nature B.V
References S. M. Nikol’skii (BF02908442_CR9) 1975
V. I. Kolyada (BF02908442_CR6) 1987; 293
V. I. Kolyada (BF02908442_CR8) 1988; 181
BF02908442_CR4
V. I. Kolyada (BF02908442_CR7) 1988; 1936
A. P. Calderón (BF02908442_CR2) 1972; 44
A. P. Calderón (BF02908442_CR3) 1978; 62
P. L. Ul’yanov (BF02908442_CR12) 1970; 81
V. I. Kolyada (BF02908442_CR5) 1975; 39
E. M. Stein (BF02908442_CR11) 1970
C. Bennett (BF02908442_CR1) 1988
K. I. Oskolkov (BF02908442_CR10) 1977; 103
References_xml – volume: 44
  start-page: 167
  year: 1972
  ident: BF02908442_CR2
  publication-title: Studia Math.
  doi: 10.4064/sm-44-6-563-582
  contributor:
    fullname: A. P. Calderón
– volume: 62
  start-page: 75
  year: 1978
  ident: BF02908442_CR3
  publication-title: Studia Math.
  doi: 10.4064/sm-62-1-75-92
  contributor:
    fullname: A. P. Calderón
– volume: 293
  start-page: 534
  year: 1987
  ident: BF02908442_CR6
  publication-title: Dokl. Akad. Nauk SSSR
  contributor:
    fullname: V. I. Kolyada
– volume: 1936
  start-page: 3
  year: 1988
  ident: BF02908442_CR7
  publication-title: Mat. Sbornik
  contributor:
    fullname: V. I. Kolyada
– volume: 181
  start-page: 117
  year: 1988
  ident: BF02908442_CR8
  publication-title: Trudy Mat. Inst. Steklov
  contributor:
    fullname: V. I. Kolyada
– volume-title: Approximation of functions of several variables and embedding theorems
  year: 1975
  ident: BF02908442_CR9
  doi: 10.1007/978-3-642-65711-5
  contributor:
    fullname: S. M. Nikol’skii
– volume-title: Interpolation of operators
  year: 1988
  ident: BF02908442_CR1
  contributor:
    fullname: C. Bennett
– volume-title: Singular integrals and differentiability property of functions
  year: 1970
  ident: BF02908442_CR11
  contributor:
    fullname: E. M. Stein
– volume: 103
  start-page: 563
  year: 1977
  ident: BF02908442_CR10
  publication-title: Mat. Sbornik
  contributor:
    fullname: K. I. Oskolkov
– ident: BF02908442_CR4
  doi: 10.1090/memo/0293
– volume: 39
  start-page: 418
  year: 1975
  ident: BF02908442_CR5
  publication-title: Izv. Akad. Nauk SSSR, Ser. Mat.
  contributor:
    fullname: V. I. Kolyada
– volume: 81
  start-page: 104
  year: 1970
  ident: BF02908442_CR12
  publication-title: Mat. Sbornik
  contributor:
    fullname: P. L. Ul’yanov
SSID ssj0009683
Score 1.5251592
Snippet Letη be a nondecreasing function on (0, 1] such thatη(t)/t decreases andη(+0)=0. Letf ∈L(In) (I≡[0,1]. Set, where the supremum is taken over all cubes...
SourceID proquest
crossref
SourceType Aggregation Database
StartPage 277
SubjectTerms Cubes
Estimates
Smoothness
Title Estimates of maximal functions measuring local smoothness
URI https://www.proquest.com/docview/2786937707
Volume 25
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELbocmkPLdBWvGWp3dMqUXAcP44b2BUglRNU3FZ24pzYXcQuEuXXM37E6QIH4OIkVhwpnsnM58nMZ4R-Z5pW0nCViEqThEqtEqUByKmCCU5yaknFbLbFBTu9oufXxXVXQuCqS5Y6rR5frSv5iFShD-Rqq2TfIdn4UOiAc5AvtCBhaN8k4xF8n1MLFt1fcvUAFzcD66l8etvUxf9sLMB5rMFiOge5zNqci0ihHGhJppHBVVncWd7X6tbYkpAuH3t-80_VDm7-TQdnadvfP8n6cmjbcuTasn9y1Bdjd05dm9lB7j6S-qNIu4iDZSn4P_yY50kuPOdsaoLJtFLhblffaFN9MfOK7gQDGTZt8b42dyylL8141ianE5kJSknnrNof9M98WMwsbFmYu7Gf0DoBI1T00PpwXJYXHSUz8ySt7TutkteG0atwZdVbOwhyuYG-hrUDHnpF2ERrZraFvoV1BA5WerGFvvyJklx8RzJqCZ43OGgJjlqCo5ZgpyW405If6Go8ujw-TcKGGUkFC8tlUtcNq-y-HYJX8MpHWjGeUSZIYTTg_ILVAAaZrhuZG8IaKSqpmaZMNpTThhT5T9SbzWdmG2FRUBjR5IYai_EMwFhiVFYLy08JVn4H_WrnZXLreVEmL-d-B-23UzYJ381iQrhgAIp5xnff9JA99NlzZdi41z7qLe_uzQEgwaU-DCJ9AjnCU6s
link.rule.ids 315,783,787,4031,27935,27936,27937
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Estimates+of+maximal+functions+measuring+local+smoothness&rft.jtitle=Analysis+mathematica+%28Budapest%29&rft.au=Kolyada%2C+V.+I.&rft.au=%D0%9A%D0%BE%D0%BB%D1%8F%D0%B4%D0%B0%2C+%D0%92.+%D0%98.&rft.date=1999&rft.issn=0133-3852&rft.eissn=1588-273X&rft.volume=25&rft.issue=1&rft.spage=277&rft.epage=300&rft_id=info:doi/10.1007%2FBF02908442&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_BF02908442
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0133-3852&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0133-3852&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0133-3852&client=summon