Estimates of maximal functions measuring local smoothness
Letη be a nondecreasing function on (0, 1] such thatη(t)/t decreases andη(+0)=0. Letf ∈L(In) (I≡[0,1]. Set, where the supremum is taken over all cubes containing the pointx. Forη=tα (0<α≤1) this definition was given by A.Calderón.In the paper we prove estimates of the maximal functions, along wit...
Saved in:
Published in | Analysis mathematica (Budapest) Vol. 25; no. 1; pp. 277 - 300 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Heidelberg
Springer Nature B.V
1999
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Letη be a nondecreasing function on (0, 1] such thatη(t)/t decreases andη(+0)=0. Letf ∈L(In) (I≡[0,1]. Set, where the supremum is taken over all cubes containing the pointx. Forη=tα (0<α≤1) this definition was given by A.Calderón.In the paper we prove estimates of the maximal functions, along with some embedding theorems. In particular, we prove the following Sobolev type inequality: if, then. Furthermore, we obtain estimates of in terms of theLp-modulus of continuity off. We find sharp conditions for to belong toLp(In) and the Orlicz classϕ(L), too.Пустьη-неубываюшая функция на (0,1] такая, чтоη(t)/t убывает иη(+0)=0. Пустьf ∈L(In) (I≡[0,1]). Положим где верхняя грань берется по всем кубам, содержашим точкуx. Дляη=tα (0<α<1) Это определение было дано А. Кальдероном.В статье иэучаются оценки максимальных функций, а также некоторые теоремы вложения. Докаэываются неравенства типа Соболева: если, то Далее, получены оценки в терминахLp-модуля непрерывностиf. Найдены точные условия для принадлежности пространствамLq(In) и классамϕ(L). |
---|---|
AbstractList | Letη be a nondecreasing function on (0, 1] such thatη(t)/t decreases andη(+0)=0. Letf ∈L(In) (I≡[0,1]. Set, where the supremum is taken over all cubes containing the pointx. Forη=tα (0<α≤1) this definition was given by A.Calderón.In the paper we prove estimates of the maximal functions, along with some embedding theorems. In particular, we prove the following Sobolev type inequality: if, then. Furthermore, we obtain estimates of in terms of theLp-modulus of continuity off. We find sharp conditions for to belong toLp(In) and the Orlicz classϕ(L), too.Пустьη-неубываюшая функция на (0,1] такая, чтоη(t)/t убывает иη(+0)=0. Пустьf ∈L(In) (I≡[0,1]). Положим где верхняя грань берется по всем кубам, содержашим точкуx. Дляη=tα (0<α<1) Это определение было дано А. Кальдероном.В статье иэучаются оценки максимальных функций, а также некоторые теоремы вложения. Докаэываются неравенства типа Соболева: если, то Далее, получены оценки в терминахLp-модуля непрерывностиf. Найдены точные условия для принадлежности пространствамLq(In) и классамϕ(L). |
Author | Коляда, В. И. Kolyada, V. I. |
Author_xml | – sequence: 1 givenname: V. I. surname: Kolyada fullname: Kolyada, V. I. – sequence: 2 givenname: В. И. surname: Коляда fullname: Коляда, В. И. |
BookMark | eNpFUEtLw0AYXKSCafXiLwh4E6LfPrKPo5ZWhYIXBW8h2exqSrJb90tA_72RCp6GYYYZZpZkEWJwhFxSuKEA6vZ-C8yAFoKdkIyWWhdM8bcFyYByXnBdsjOyRNwDgJGaZ8RscOyGenSYR58P9ddM-txPwY5dDJgPrsYpdeE976OdFRxiHD-CQzwnp77u0V384Yq8bjcv68di9_zwtL7bFZYqMRZt66WlwKlWVhlOm1oqEFKz0jVGqVK2jHHZtN5wx6Q32ppGNkIaL5TwrOQrcnXMPaT4OTkcq32cUpgrK6a0NFwpULPr-uiyKSIm56tDmqek74pC9XtN9X8N_wGkjFaY |
CitedBy_id | crossref_primary_10_1007_s11253_010_0363_1 crossref_primary_10_1134_S0001434609110200 crossref_primary_10_4213_sm7828 crossref_primary_10_4213_mzm10600 crossref_primary_10_1070_SM2012v203n07ABEH004253 crossref_primary_10_3103_S1066369X0805006X crossref_primary_10_4213_mzm8526 crossref_primary_10_1515_forum_2010_003 crossref_primary_10_1007_s11006_005_0088_x crossref_primary_10_4213_mzm2550 crossref_primary_10_1090_tran_8632 crossref_primary_10_1134_S0001434615030098 |
Cites_doi | 10.4064/sm-44-6-563-582 10.4064/sm-62-1-75-92 10.1007/978-3-642-65711-5 10.1090/memo/0293 |
ContentType | Journal Article |
Copyright | Akadémiai Kiadó 1999. |
Copyright_xml | – notice: Akadémiai Kiadó 1999. |
DBID | AAYXX CITATION |
DOI | 10.1007/BF02908442 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Mathematics |
EISSN | 1588-273X |
EndPage | 300 |
ExternalDocumentID | 10_1007_BF02908442 |
GroupedDBID | --K -52 -5D -5G -BR -EM -Y2 -~C .86 .VR 06D 0R~ 0VY 1B1 1N0 1SB 2.D 203 23M 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 78A 8TC 95- 95. 95~ 96X AAAVM AABHQ AACDK AAEOY AAHNG AAIAL AAJBT AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYXX ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIPQ ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACSNA ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEARS AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AI. AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BAPOH BBWZM BDATZ BGNMA CAG CITATION COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LLZTM M4Y MA- MET MKB N2Q NB0 NDZJH NPVJJ NQ- NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P9R PF0 PT4 PT5 QOK QOS R4E R89 R9I RHV RIG RKA RNI ROL RPX RPZ RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SDD SDH SDM SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW VH1 W23 W48 WK8 YLTOR Z45 ZMTXR ZWQNP ~EX |
ID | FETCH-LOGICAL-c174t-ddf6c103187c7931ba67046825eb97756d2236bdf93e26f98c9b6b469f474f253 |
ISSN | 0133-3852 |
IngestDate | Thu Oct 10 18:18:38 EDT 2024 Thu Sep 12 16:47:52 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c174t-ddf6c103187c7931ba67046825eb97756d2236bdf93e26f98c9b6b469f474f253 |
PQID | 2786937707 |
PQPubID | 2043833 |
PageCount | 24 |
ParticipantIDs | proquest_journals_2786937707 crossref_primary_10_1007_BF02908442 |
PublicationCentury | 1900 |
PublicationDate | 1999-00-00 |
PublicationDateYYYYMMDD | 1999-01-01 |
PublicationDate_xml | – year: 1999 text: 1999-00-00 |
PublicationDecade | 1990 |
PublicationPlace | Heidelberg |
PublicationPlace_xml | – name: Heidelberg |
PublicationTitle | Analysis mathematica (Budapest) |
PublicationYear | 1999 |
Publisher | Springer Nature B.V |
Publisher_xml | – name: Springer Nature B.V |
References | S. M. Nikol’skii (BF02908442_CR9) 1975 V. I. Kolyada (BF02908442_CR6) 1987; 293 V. I. Kolyada (BF02908442_CR8) 1988; 181 BF02908442_CR4 V. I. Kolyada (BF02908442_CR7) 1988; 1936 A. P. Calderón (BF02908442_CR2) 1972; 44 A. P. Calderón (BF02908442_CR3) 1978; 62 P. L. Ul’yanov (BF02908442_CR12) 1970; 81 V. I. Kolyada (BF02908442_CR5) 1975; 39 E. M. Stein (BF02908442_CR11) 1970 C. Bennett (BF02908442_CR1) 1988 K. I. Oskolkov (BF02908442_CR10) 1977; 103 |
References_xml | – volume: 44 start-page: 167 year: 1972 ident: BF02908442_CR2 publication-title: Studia Math. doi: 10.4064/sm-44-6-563-582 contributor: fullname: A. P. Calderón – volume: 62 start-page: 75 year: 1978 ident: BF02908442_CR3 publication-title: Studia Math. doi: 10.4064/sm-62-1-75-92 contributor: fullname: A. P. Calderón – volume: 293 start-page: 534 year: 1987 ident: BF02908442_CR6 publication-title: Dokl. Akad. Nauk SSSR contributor: fullname: V. I. Kolyada – volume: 1936 start-page: 3 year: 1988 ident: BF02908442_CR7 publication-title: Mat. Sbornik contributor: fullname: V. I. Kolyada – volume: 181 start-page: 117 year: 1988 ident: BF02908442_CR8 publication-title: Trudy Mat. Inst. Steklov contributor: fullname: V. I. Kolyada – volume-title: Approximation of functions of several variables and embedding theorems year: 1975 ident: BF02908442_CR9 doi: 10.1007/978-3-642-65711-5 contributor: fullname: S. M. Nikol’skii – volume-title: Interpolation of operators year: 1988 ident: BF02908442_CR1 contributor: fullname: C. Bennett – volume-title: Singular integrals and differentiability property of functions year: 1970 ident: BF02908442_CR11 contributor: fullname: E. M. Stein – volume: 103 start-page: 563 year: 1977 ident: BF02908442_CR10 publication-title: Mat. Sbornik contributor: fullname: K. I. Oskolkov – ident: BF02908442_CR4 doi: 10.1090/memo/0293 – volume: 39 start-page: 418 year: 1975 ident: BF02908442_CR5 publication-title: Izv. Akad. Nauk SSSR, Ser. Mat. contributor: fullname: V. I. Kolyada – volume: 81 start-page: 104 year: 1970 ident: BF02908442_CR12 publication-title: Mat. Sbornik contributor: fullname: P. L. Ul’yanov |
SSID | ssj0009683 |
Score | 1.5251592 |
Snippet | Letη be a nondecreasing function on (0, 1] such thatη(t)/t decreases andη(+0)=0. Letf ∈L(In) (I≡[0,1]. Set, where the supremum is taken over all cubes... |
SourceID | proquest crossref |
SourceType | Aggregation Database |
StartPage | 277 |
SubjectTerms | Cubes Estimates Smoothness |
Title | Estimates of maximal functions measuring local smoothness |
URI | https://www.proquest.com/docview/2786937707 |
Volume | 25 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELbocmkPLdBWvGWp3dMqUXAcP44b2BUglRNU3FZ24pzYXcQuEuXXM37E6QIH4OIkVhwpnsnM58nMZ4R-Z5pW0nCViEqThEqtEqUByKmCCU5yaknFbLbFBTu9oufXxXVXQuCqS5Y6rR5frSv5iFShD-Rqq2TfIdn4UOiAc5AvtCBhaN8k4xF8n1MLFt1fcvUAFzcD66l8etvUxf9sLMB5rMFiOge5zNqci0ihHGhJppHBVVncWd7X6tbYkpAuH3t-80_VDm7-TQdnadvfP8n6cmjbcuTasn9y1Bdjd05dm9lB7j6S-qNIu4iDZSn4P_yY50kuPOdsaoLJtFLhblffaFN9MfOK7gQDGTZt8b42dyylL8141ianE5kJSknnrNof9M98WMwsbFmYu7Gf0DoBI1T00PpwXJYXHSUz8ySt7TutkteG0atwZdVbOwhyuYG-hrUDHnpF2ERrZraFvoV1BA5WerGFvvyJklx8RzJqCZ43OGgJjlqCo5ZgpyW405If6Go8ujw-TcKGGUkFC8tlUtcNq-y-HYJX8MpHWjGeUSZIYTTg_ILVAAaZrhuZG8IaKSqpmaZMNpTThhT5T9SbzWdmG2FRUBjR5IYai_EMwFhiVFYLy08JVn4H_WrnZXLreVEmL-d-B-23UzYJ381iQrhgAIp5xnff9JA99NlzZdi41z7qLe_uzQEgwaU-DCJ9AjnCU6s |
link.rule.ids | 315,783,787,4031,27935,27936,27937 |
linkProvider | Library Specific Holdings |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Estimates+of+maximal+functions+measuring+local+smoothness&rft.jtitle=Analysis+mathematica+%28Budapest%29&rft.au=Kolyada%2C+V.+I.&rft.au=%D0%9A%D0%BE%D0%BB%D1%8F%D0%B4%D0%B0%2C+%D0%92.+%D0%98.&rft.date=1999&rft.issn=0133-3852&rft.eissn=1588-273X&rft.volume=25&rft.issue=1&rft.spage=277&rft.epage=300&rft_id=info:doi/10.1007%2FBF02908442&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_BF02908442 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0133-3852&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0133-3852&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0133-3852&client=summon |