An enzyme histochemical and biochemical study of the activity of three oxidative enzymes in the developing rat parotid gland

Information on ductal differentiation in the developing rat parotid gland is sparse. One of the main functions of the striated and excretory ducts in this gland is the selective exchange of electrolytes from the primary fluid secreted by the acini. These ducts are rich in a number of enzymes involve...

Full description

Saved in:
Bibliographic Details
Published inBiotechnic & histochemistry Vol. 77; no. 4; pp. 189 - 200
Main Authors Redman, R S, Jelic, J S, Kruse, D H, Wilkins, S D, Field, R B
Format Journal Article
LanguageEnglish
Published England 01.07.2002
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Information on ductal differentiation in the developing rat parotid gland is sparse. One of the main functions of the striated and excretory ducts in this gland is the selective exchange of electrolytes from the primary fluid secreted by the acini. These ducts are rich in a number of enzymes involved in this task, suggesting that they might be useful as markers of ductal differentiation. The objective of this investigation was to delineate the developmental changes in activity of three of these, cytochrome C oxidase (CCO), succinate dehydrogenase (SDH), nicotinamide adenine phosphate dinucleotide (reduced form)-dehydrogenase (NADPH-DH). Histochemical localization of all three enzymes in fresh frozen sections was complemented by biochemical assays of CCO and SDH and cytochemical localization of CCO. Biochemically, CCO- and SDH-specific activity in gland homogenates increased progressively after birth, reaching adult levels at 21-28 days. Histochemically, deposits of reaction products of all three enzymes increased more in the striated and excretory ducts, especially in their basal cytoplasm, than in other glandular structures between 19 days in utero and 28 days after birth. During the same age span, the mitochondria in the striated and excretory ducts increased markedly in both number and size, migrated to a mostly basal location, and increased from many to virtually all showing strong cytochemical CCO reactions. These histochemical and cytochemical patterns of changes in enzyme activity at the cellular level accounted for the overall increases in CCO and SDH seen in the biochemical assays. Only the SDH histochemical reaction was consistently weak in the acini and intercalated ducts, and thus provided the most contrast with the progressively stronger reactions in the larger ducts. We conclude that of the three enzymes evaluated in these experiments, SDH is the best marker of the functional differentiation of the striated and excretory ducts in the developing rat parotid gland.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1052-0295
DOI:10.1080/714028201