ON THE STABILITY OF A GENERAL ADDITIVE FUNCTIONAL INEQUALITY IN BANACH SPACES
In this paper, we prove the generalized Hyers-Ulam stability of the additive functional inequality∥f(2x1) + f(2x2) + … + f(2xn)∥≤ ∥tf(x1 + x2 + … + xn)∥ in Banach spaces where a positive integer n ≥ 3 and a real number t such that 2 ≤ t < n. KCI Citation Count: 1
Saved in:
Published in | Journal of the Chungcheong Mathematical Society Vol. 26; no. 4; pp. 907 - 913 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
충청수학회
15.11.2013
|
Subjects | |
Online Access | Get full text |
ISSN | 1226-3524 2383-6245 |
DOI | 10.14403/jcms.2013.26.4.907 |
Cover
Loading…
Summary: | In this paper, we prove the generalized Hyers-Ulam stability of the additive functional inequality∥f(2x1) + f(2x2) + … + f(2xn)∥≤ ∥tf(x1 + x2 + … + xn)∥ in Banach spaces where a positive integer n ≥ 3 and a real number t such that 2 ≤ t < n. KCI Citation Count: 1 |
---|---|
Bibliography: | G704-001724.2013.26.4.018 |
ISSN: | 1226-3524 2383-6245 |
DOI: | 10.14403/jcms.2013.26.4.907 |