ON THE STABILITY OF A GENERAL ADDITIVE FUNCTIONAL INEQUALITY IN BANACH SPACES

In this paper, we prove the generalized Hyers-Ulam stability of the additive functional inequality∥f(2x1) + f(2x2) + … + f(2xn)∥≤ ∥tf(x1 + x2 + … + xn)∥ in Banach spaces where a positive integer n ≥ 3 and a real number t such that 2 ≤ t < n. KCI Citation Count: 1

Saved in:
Bibliographic Details
Published inJournal of the Chungcheong Mathematical Society Vol. 26; no. 4; pp. 907 - 913
Main Author Chung, Sang-Cho
Format Journal Article
LanguageEnglish
Published 충청수학회 15.11.2013
Subjects
Online AccessGet full text
ISSN1226-3524
2383-6245
DOI10.14403/jcms.2013.26.4.907

Cover

Loading…
More Information
Summary:In this paper, we prove the generalized Hyers-Ulam stability of the additive functional inequality∥f(2x1) + f(2x2) + … + f(2xn)∥≤ ∥tf(x1 + x2 + … + xn)∥ in Banach spaces where a positive integer n ≥ 3 and a real number t such that 2 ≤ t < n. KCI Citation Count: 1
Bibliography:G704-001724.2013.26.4.018
ISSN:1226-3524
2383-6245
DOI:10.14403/jcms.2013.26.4.907