Gate Dielectric Current Transport Mechanisms in N-SiC Metal Oxide Semiconductor Capacitor
In this work, the voltage and temperature behavior of gate leakage current transport in SiC/SiO2 metal oxide semiconductor (MOS) capacitor was investigated. The wide range of gate voltage from-50 to 50V and temperature from 300 to 400 K, respectively uses to study the gate current conduction mechani...
Saved in:
Published in | Materials science forum Vol. 1090; pp. 165 - 169 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Trans Tech Publications Ltd
31.05.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | In this work, the voltage and temperature behavior of gate leakage current transport in SiC/SiO2 metal oxide semiconductor (MOS) capacitor was investigated. The wide range of gate voltage from-50 to 50V and temperature from 300 to 400 K, respectively uses to study the gate current conduction mechanism. Two dominant gate leakage current transport modes in SiO2 during strong accumulation with the application of positive bias were caused by Fowler–Nordheim (FN) tunneling and Poole-Frenkel (PF) emission leakage conduction. For positively biased case, FN tunneling in the range of 30-40 V dominates the gate leakage current and Poole–Frenkel conduction attributed beyond 40 V. |
---|---|
Bibliography: | Special topic volume with invited peer-reviewed papers only |
ISSN: | 0255-5476 1662-9752 1662-9752 |
DOI: | 10.4028/p-dv215a |