Modified Advanced Encryption Standard for Boost Image Encryption
Cryptography is a field of study that deals with converting data from a readable to an unreadable format. It can provide secrecy, data integrity, authenticity, and non-repudiation services. Security has become a concern for the community because of the technology’s potential use in numerous sectors...
Saved in:
Published in | UHD Journal of Science and Technology Vol. 6; no. 1; pp. 52 - 59 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
University of Human Development
27.04.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Cryptography is a field of study that deals with converting data from a readable to an unreadable format. It can provide secrecy, data integrity, authenticity, and non-repudiation services. Security has become a concern for the community because of the technology’s potential use in numerous sectors of any company, market, agency, or governmental body, information. The cryptosystems ensure that data are transported securely and only authorized individuals have access to it. Deeply encrypted data that cannot be deciphered through cryptanalysis are in high demand right now. There are a variety of encryption algorithms that can guarantee the confidentiality of data. For multimedia data, standard symmetric encryption algorithms (AES) can give superior protection. However, using the symmetric key encryption approach on more complicated multimedia data (mainly photos) may result in a computational issue. To address this issue, the AES has been modified to satisfy the high computing requirements due to the complex mathematical operations in MixColumns transformation, which slow down the encryption process. The modified AES uses bit permutation to replace the MixColumns transformation in AES because it is simple to construct and does not require any complex mathematical computation. This research focuses on using the Modified Advanced Encryption Standard (MAES) algorithm with 128 and 256 bit key sizes to encrypt and decrypt image data. The algorithms were implemented using the Python programming language without complex mathematical computation. By comparing the MAES algorithm with the original AES algorithm, the results showed that the MAES requires less encrypting and decryption time with higher efficiency for all file sizes. |
---|---|
ISSN: | 2521-4209 2521-4217 |
DOI: | 10.21928/uhdjst.v6n1y2022.pp52-59 |