Effect of ordinary portland cement on some properties of pervious geopolymer concrete
In this research, a study is made on the Pervious Geopolymer Concrete (PGC), which is based on local material (Metakaolin). The inclusion of Ordinary Portland Cement (OPC) as a partial substitute for Metakaolin (MK) for the production of (PGCs) has also been investigated. Pervious Geopolymer concret...
Saved in:
Published in | Engineering and Technology Journal Vol. 39; no. 4A; pp. 668 - 674 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Baghdad, Iraq
University of Technology
25.04.2021
Unviversity of Technology- Iraq |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | In this research, a study is made on the Pervious Geopolymer Concrete (PGC), which is based on local material (Metakaolin). The inclusion of Ordinary Portland Cement (OPC) as a partial substitute for Metakaolin (MK) for the production of (PGCs) has also been investigated. Pervious Geopolymer concrete was outputted from the local Metakaolin (MK), and ordinary Portland cement (OPC) as a partial substitute by weight of MK and silicate of sodium (Na2SiO3) and hydroxide of sodium (NaOH) solution. All PGC samples were cured after 24 hours from casting for five hours at a temperature degree of 50 ° C, then they tested after 28 days. The compressive-strength, total content of voids, the strength of bending, dry-density, and thermal-conductivity of pervious Geopolymer concrete were examined. The mechanical results of testing ranged from (11.03 and 2.25) to (14.3 and 2.75) MPa for compressive-strength and flexural strength In this research, a study is made on the Pervious Geopolymer Concrete (PGC), which is based on local material (Metakaolin). The inclusion of Ordinary Portland Cement (OPC) as a partial substitute for Metakaolin (MK) for the production of (PGCs) has also been investigated. Pervious Geopolymer concrete was outputted from the local Metakaolin (MK), and ordinary Portland cement (OPC) as a partial substitute by weight of MK and silicate of sodium (Na2SiO3) and hydroxide of sodium (NaOH) solution. All PGC samples were cured after 24 hours from casting for five hours at a temperature degree of 50 ° C, then they tested after 28 days. The compressive-strength, total content of voids, the strength of bending, dry-density, and thermal-conductivity of pervious Geopolymer concrete were examined. The mechanical results of testing ranged from (11.03 and 2.25) to (14.3 and 2.75) MPa for compressive-strength and flexural strength respectively. |
---|---|
ISSN: | 1681-6900 2412-0758 |
DOI: | 10.30684/etj.v39i4A.1793 |