Resilient Coastal Protection Infrastructures: Probabilistic Sensitivity Analysis of Wave Overtopping Using Gaussian Process Surrogate Models
This paper presents a novel mathematical framework for assessing and predicting the resilience of critical coastal infrastructures against wave overtopping hazards and extreme climatic events. A probabilistic sensitivity analysis model is developed to evaluate the relative influence of hydrodynamic,...
Saved in:
Published in | Sustainability Vol. 16; no. 20; p. 9110 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.10.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | This paper presents a novel mathematical framework for assessing and predicting the resilience of critical coastal infrastructures against wave overtopping hazards and extreme climatic events. A probabilistic sensitivity analysis model is developed to evaluate the relative influence of hydrodynamic, geomorphological, and structural factors contributing to wave overtopping dynamics. Additionally, a stochastic Gaussian process (GP) model is introduced to predict the mean overtopping discharge from coastal defences. Both the sensitivity analysis and the predictive models are validated using a large homogeneous dataset comprising 163 laboratory and field-scale tests. Statistical evaluations demonstrate the superior performance of the GPs in identifying key parameters driving wave overtopping and predicting mean discharge rates, outperforming existing regression-based formulae. The proposed model offers a robust predictive tool for assessing the performance of critical coastal protection infrastructures under various climate scenarios. |
---|---|
ISSN: | 2071-1050 2071-1050 |
DOI: | 10.3390/su16209110 |