Kinase-mediated quasi-dimers of EGFR

Ligand-induced dimerization of the epidermal growth factor receptor (ErbB-1/EGFR) involves conformational changes that expose an extracellular dimerization interface. Subsequent alterations within the cytoplasmic kinase domain, which culminate in tyrosine phosphorylation, are less understood. Our st...

Full description

Saved in:
Bibliographic Details
Published inThe FASEB journal Vol. 24; no. 12; pp. 4744 - 4755
Main Authors Bublil, Erez M, Pines, Gur, Patel, Gargi, Fruhwirth, Gilbert, Ng, Tony, Yarden, Yosef
Format Journal Article
LanguageEnglish
Published United States The Federation of American Societies for Experimental Biology 01.12.2010
Subjects
Online AccessGet more information

Cover

Loading…
More Information
Summary:Ligand-induced dimerization of the epidermal growth factor receptor (ErbB-1/EGFR) involves conformational changes that expose an extracellular dimerization interface. Subsequent alterations within the cytoplasmic kinase domain, which culminate in tyrosine phosphorylation, are less understood. Our study addressed this question by using two strategies: a chimeric receptor approach employed ErbB-3, whose defective kinase domain was replaced by the respective part of EGFR. The implanted full-length kinase, unlike its subdomains, conferred dimerization and catalysis. The data infer that the kinase function of EGFR is restrained by the carboxyl tail; once grafted distally to the ectopic tail of ErbB-3, the kinase domain acquires quasi-dimerization and activation. In an attempt to alternatively refold the cytoplasmic tail, our other approach employed kinase inhibitors. Biophysical measurements and covalent cross-linking analyses showed that inhibitors targeting the active conformation of EGFR, in contrast to a compound recognizing the inactive conformation, induce quasi-dimers in a manner similar to the chimeric ErbB-3 molecule. Collectively, these observations unveil kinase domain-mediated quasi-dimers, which are regulated by an autoinhibitory carboxyl tail. On the basis of these observations, we propose that quasi-dimers precede formation of ligand-induced, fully active dimers, which are stabilized by both extracellular and intracellular receptor-receptor interactions.--Bublil, E. M., Pines, G., Patel, G., Fruhwirth, G., Ng, T., Yosef Yarden. Kinase-mediated quasi-dimers of EGFR.
ISSN:0892-6638
1530-6860
DOI:10.1096/fj.10.166199