NETWORK TRAFFIC ANOMALIES IDENTIFICATION BASED ON CLASSIFICATION METHODS / TINKLO SRAUTO ANOMALIJŲ IDENTIFIKAVIMAS, TAIKANT KLASIFIKAVIMO METODUS

A problem of network traffic anomalies detection in the computer networks is analyzed. Overview of anomalies detection methods is given then advantages and disadvantages of the different methods are analyzed. Model for the traffic anomalies detection was developed based on IBM SPSS Modeler and is us...

Full description

Saved in:
Bibliographic Details
Published inScience future of Lithuania Vol. 7; no. 3; pp. 340 - 344
Main Authors Racys, Donatas, Mazeika, Dalius
Format Journal Article
LanguageEnglish
Published Vilnius Gediminas Technical University 01.06.2015
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:A problem of network traffic anomalies detection in the computer networks is analyzed. Overview of anomalies detection methods is given then advantages and disadvantages of the different methods are analyzed. Model for the traffic anomalies detection was developed based on IBM SPSS Modeler and is used to analyze SNMP data of the router. Investigation of the traffic anomalies was done using three classification methods and different sets of the learning data. Based on the results of investigation it was determined that C5.1 decision tree method has the largest accuracy and performance and can be successfully used for identification of the network traffic anomalies. Straipsnyje nagrinėjama kompiuterių tinklo srauto anomalijų atpažinimo problema. Apžvelgiami kompiuterių tinklų anomalijų aptikimo metodai bei aptariami jų privalumai ir trūkumai. Naudojant IBM SPSS Modeler programų paketą sudarytas nagrinėjamo tinklo srauto anomalijų atpažinimo modelis, pritaikytas SNMP protokolu pagrįstiems maršruto parinktuvo duomenims apdoroti. Pagal tris klasifikavimo metodus ir skirtingus mokymui skirtus duomenų rinkinius atlikti skaičiavimai tinklo anomalijoms identifikuoti. Palyginant gautus rezultatus nustatyta, kad C5.1 sprendimo medžio algoritmas yra tiksliausias ir sparčiausias, todėl ir tinkamiausias tinklo srauto anomalijoms atpažinti.
ISSN:2029-2341
2029-2252
2029-2341
DOI:10.3846/mla.2015.796