Diagnostic performance of artificial intelligence algorithms for detection of pulmonary involvement by COVID-19 based on portable radiography

To evaluate the diagnostic performance of different artificial intelligence (AI) algorithms for the identification of pulmonary involvement by SARS-CoV-2 based on portable chest radiography (RX). Prospective observational study that included patients admitted for suspected COVID-19 infection in a un...

Full description

Saved in:
Bibliographic Details
Published inMedicina clínica (English ed.) Vol. 160; no. 2; pp. 78 - 81
Main Authors Cobeñas, Ricardo Luis, de Vedia, María, Florez, Juan, Jaramillo, Daniela, Ferrari, Luciana, Re, Ricardo
Format Journal Article
LanguageEnglish
Published Spain Elsevier España, S.L.U 20.01.2023
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:To evaluate the diagnostic performance of different artificial intelligence (AI) algorithms for the identification of pulmonary involvement by SARS-CoV-2 based on portable chest radiography (RX). Prospective observational study that included patients admitted for suspected COVID-19 infection in a university hospital between July and November 2020. The reference standard of pulmonary involvement by SARS-CoV-2 comprised a positive PCR test and low-tract respiratory symptoms. 493 patients were included, 140 (28%) with positive PCR and 32 (7%) with SARS-CoV-2 pneumonia. The AI-B algorithm had the best diagnostic performance (areas under the ROC curve AI-B 0.73, vs. AI-A 0.51, vs. AI-C 0.57). Using a detection threshold greater than 55%, AI-B had greater diagnostic performance than the specialist [(area under the curve of 0.68 (95% CI 0.64–0.72), vs. 0.54 (95% CI 0.49–0.59)]. AI algorithms based on portable RX enabled a diagnostic performance comparable to human assessment for the detection of SARS-CoV-2 lung involvement. Evaluar el rendimiento diagnóstico de diferentes algoritmos de inteligencia artificial (IA) para la identificación de compromiso pulmonar por SARS-CoV-2 basados en radiografía (Rx) de tórax portátil. Estudio observacional prospectivo que incluyó pacientes ingresados por sospecha de infección por COVID-19 en un hospital universitario entre julio y noviembre de 2020. El patrón de referencia de compromiso pulmonar por SARS-CoV-2 comprendió una PCR positiva y síntomas respiratorios bajos. Se incluyeron 493 pacientes, 140 (28%) con PCR positiva y 32 (7%) con neumonía por SARS-CoV-2. El algoritmo AI-B tuvo el mejor rendimiento diagnóstico (áreas bajo la curva ROC AI-B 0,73 vs. AI-A 0,51 vs. AI-C 0,57). Utilizando un umbral de detección superior al 55%. AI-B presentó mayor precisión que el especialista (área bajo la curva de 0,68 [IC 95%: 0,64–0,72] vs. 0,54 [IC 95%: 0,49–0,59]). Los algoritmos de IA basados en Rx portátiles permiten una precisión diagnóstica comparable a la humana para la detección de compromiso pulmonar por SARS-CoV-2.
ISSN:2387-0206
2387-0206
DOI:10.1016/j.medcle.2022.04.020