Diagnostic performance of artificial intelligence algorithms for detection of pulmonary involvement by COVID-19 based on portable radiography
To evaluate the diagnostic performance of different artificial intelligence (AI) algorithms for the identification of pulmonary involvement by SARS-CoV-2 based on portable chest radiography (RX). Prospective observational study that included patients admitted for suspected COVID-19 infection in a un...
Saved in:
Published in | Medicina clínica (English ed.) Vol. 160; no. 2; pp. 78 - 81 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Spain
Elsevier España, S.L.U
20.01.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | To evaluate the diagnostic performance of different artificial intelligence (AI) algorithms for the identification of pulmonary involvement by SARS-CoV-2 based on portable chest radiography (RX).
Prospective observational study that included patients admitted for suspected COVID-19 infection in a university hospital between July and November 2020. The reference standard of pulmonary involvement by SARS-CoV-2 comprised a positive PCR test and low-tract respiratory symptoms.
493 patients were included, 140 (28%) with positive PCR and 32 (7%) with SARS-CoV-2 pneumonia. The AI-B algorithm had the best diagnostic performance (areas under the ROC curve AI-B 0.73, vs. AI-A 0.51, vs. AI-C 0.57). Using a detection threshold greater than 55%, AI-B had greater diagnostic performance than the specialist [(area under the curve of 0.68 (95% CI 0.64–0.72), vs. 0.54 (95% CI 0.49–0.59)].
AI algorithms based on portable RX enabled a diagnostic performance comparable to human assessment for the detection of SARS-CoV-2 lung involvement.
Evaluar el rendimiento diagnóstico de diferentes algoritmos de inteligencia artificial (IA) para la identificación de compromiso pulmonar por SARS-CoV-2 basados en radiografía (Rx) de tórax portátil.
Estudio observacional prospectivo que incluyó pacientes ingresados por sospecha de infección por COVID-19 en un hospital universitario entre julio y noviembre de 2020. El patrón de referencia de compromiso pulmonar por SARS-CoV-2 comprendió una PCR positiva y síntomas respiratorios bajos.
Se incluyeron 493 pacientes, 140 (28%) con PCR positiva y 32 (7%) con neumonía por SARS-CoV-2. El algoritmo AI-B tuvo el mejor rendimiento diagnóstico (áreas bajo la curva ROC AI-B 0,73 vs. AI-A 0,51 vs. AI-C 0,57). Utilizando un umbral de detección superior al 55%. AI-B presentó mayor precisión que el especialista (área bajo la curva de 0,68 [IC 95%: 0,64–0,72] vs. 0,54 [IC 95%: 0,49–0,59]).
Los algoritmos de IA basados en Rx portátiles permiten una precisión diagnóstica comparable a la humana para la detección de compromiso pulmonar por SARS-CoV-2. |
---|---|
ISSN: | 2387-0206 2387-0206 |
DOI: | 10.1016/j.medcle.2022.04.020 |