A Validation of OLCI Sentinel-3 Water Products in the Baltic Sea and an Evaluation of the Effect of System Vicarious Calibration (SVC) on the Level-2 Water Products
The monitoring of coastal waters using satellite data, from sensors such as Sentinel-3 OLCI, has become a vital tool in the management of these water environments, especially when it comes to improving our understanding of the effects of climate change on these regions. In this study, the latest Lev...
Saved in:
Published in | Remote sensing (Basel, Switzerland) Vol. 16; no. 21; p. 3932 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.11.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The monitoring of coastal waters using satellite data, from sensors such as Sentinel-3 OLCI, has become a vital tool in the management of these water environments, especially when it comes to improving our understanding of the effects of climate change on these regions. In this study, the latest Level-2 water products derived from different OLCI Sentinel-3 processors were validated against a comprehensive in situ dataset from the NW Baltic Sea proper region through a matchup analysis. The products validated were those of the regionally adapted Case-2 Regional Coast Colour (C2RCC) OLCI processor (v1.0 and v2.1), as well as the latest standard Level-2 OLCI Case-2 (neural network) products from Sentinel-3’s processing baseline, listed as follows: Baseline Collection 003 (BC003), including “CHL_NN”, “TSM_NN”, and “ADG443_NN”. These products have not yet been validated to such an extent in the region. Furthermore, the effect of the current EUMETSAT system vicarious calibration (SVC) on the Level-2 water products was also validated. The results showed that the system vicarious calibration (SVC) reduces the reliability of the Level-2 OLCI products. For example, the application of these SVC gains to the OLCI data for the regionally adapted v2.1 C2RCC products resulted in RMSD increases of 36% for “conc_tsm”; 118% for “conc_chl”; 33% for “iop_agelb”; 50% for “iop_adg”; and 10% for “kd_z90max” using a ±3 h validation window. This is the first time the effects of these SVC gains on the Level-2 OLCI water products has been isolated and quantified in the study region. The findings indicate that the current EUMETSAT SVC gains should be applied and interpreted with caution in the region of study at present. A key outcome of the paper recommends the development of a regionally specific SVC against AERONET-OC data in order to improve the Level-2 water product retrieval in the region. The results of this study are important for end users and the water authorities making use of the satellite water products in the Baltic Sea region. |
---|---|
ISSN: | 2072-4292 2072-4292 |
DOI: | 10.3390/rs16213932 |