A combined analysis of the H 0 late time direct measurements and the impact on the Dark Energy sector

ABSTRACT We combine 23 Hubble constant measurements based on Cepheids-SN Ia, TRGB-SN Ia, Miras-SN Ia, Masers, Tully Fisher, Surface Brightness Fluctuations, SN II, Time-delay Lensing, Standard Sirens and γ-ray Attenuation, obtaining our best optimistic H0 estimate, that is H0 = 72.94 ± 0.75 km s–1 M...

Full description

Saved in:
Bibliographic Details
Published inMonthly notices of the Royal Astronomical Society Vol. 502; no. 2; pp. 2065 - 2073
Main Author Di Valentino, Eleonora
Format Journal Article
LanguageEnglish
Published 01.04.2021
Online AccessGet full text

Cover

Loading…
More Information
Summary:ABSTRACT We combine 23 Hubble constant measurements based on Cepheids-SN Ia, TRGB-SN Ia, Miras-SN Ia, Masers, Tully Fisher, Surface Brightness Fluctuations, SN II, Time-delay Lensing, Standard Sirens and γ-ray Attenuation, obtaining our best optimistic H0 estimate, that is H0 = 72.94 ± 0.75 km s–1 Mpc–1 at 68 per cent CL. This is in 5.9σ tension with the ΛCDM model, therefore we evaluate its impact on the extended Dark Energy cosmological models that can alleviate the tension. We find more than 4.9σ evidence for a phantom Dark Energy equation of state in the wCDM scenario, the cosmological constant ruled out at more than 3σ in a w0waCDM model and more than 5.7σ evidence for a coupling between Dark Matter and Dark Energy in the IDE scenario. Finally, we check the robustness of our results; and we quote two additional combinations of the Hubble constant. The ultra-conservative estimate, H0 = 72.7 ± 1.1 km s–1 Mpc–1 at 68 per cent CL, is obtained removing the Cepheids-SN Ia and the Time-Delay Lensing based measurements, and confirms the evidence for new physics.
ISSN:0035-8711
1365-2966
DOI:10.1093/mnras/stab187