Depolarization of the electromagnetic field in a locally inhomogeneous earth-ionosphere waveguide
This paper presents a further development of the numerical-analytical method for the solution of three-dimensional problems in the theory of radio wave propagation. We consider a vector problem of the electromagnetic field of a vertical electric dipole in a plane Earth-ionosphere waveguide with a lo...
Saved in:
Published in | Radiophysics and quantum electronics Vol. 43; no. 7; pp. 557 - 568 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
New York
Springer Nature B.V
01.07.2000
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | This paper presents a further development of the numerical-analytical method for the solution of three-dimensional problems in the theory of radio wave propagation. We consider a vector problem of the electromagnetic field of a vertical electric dipole in a plane Earth-ionosphere waveguide with a local large-scale irregularity on the anisotropic ionosphere wall. The possibility of lowering (elevating) of the local region of the upper waveguide wall with respect to the regular ionosphere level is taken into account. The field components on the boundary surfaces obey the Leontovich impedance conditions. The problem is reduced to a system of two-dimensional integral equations taking into account the overexcitation and depolarization of the field scattered by the irregularity. Using asymptotic (with respect to the parameter kr 1) integration along the direction perpendicular to the ray path, we transform this system to a system of one-dimensional integral equations. The system is solved numerically in the diagonal approximation, combining direct inversion of the Volterra integral operator and the subsequent iterations. The proposed method reduces the computer time required for solving the problem and is useful for the study of both small-scale and large-scale irregularities. We obtained estimates of the TE field components that are not excited by the source considered and originate entirely from field scattering by a three-dimensional irregularity disturbing the geometric regularity of the ionospheric waveguide wall.[PUBLICATION ABSTRACT] |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0033-8443 1573-9120 |
DOI: | 10.1007/BF02677087 |