Genetic evaluation for economic traits of commercial Hanwoo population using single-step GBLUP

Background: Recently, the single-step genomic best linear unbiased prediction (ssGBLUP) method, which incorporates not only genomic information but also phenotypic information of pedigree, is under study. In this study, we performed a ssGBLUP analysis on a commercial Hanwoo population using phenotyp...

Full description

Saved in:
Bibliographic Details
Published inJournal of animal reproduction & biotechnology (Online) Vol. 38; no. 4; pp. 268 - 274
Main Authors Lee, Gwang Hyeon, Tseveen, Khaliunaa, Lee, Yoon Seok, Kong, Hong Sik
Format Journal Article
LanguageEnglish
Published 한국동물생명공학회(구 한국수정란이식학회) 31.12.2023
사단법인 한국동물생명공학회
Subjects
Online AccessGet full text
ISSN2671-4639
2671-4663
DOI10.12750/JARB.38.4.268

Cover

More Information
Summary:Background: Recently, the single-step genomic best linear unbiased prediction (ssGBLUP) method, which incorporates not only genomic information but also phenotypic information of pedigree, is under study. In this study, we performed a ssGBLUP analysis on a commercial Hanwoo population using phenotypic, genotypic, and pedigree data. Methods: The test population comprised Hanwoo 1,740 heads raised in four regions of Korea, while the reference population used Hanwoo 18,499 heads raised across the country and two-generation pedigree data. Analysis was performed using genotype data generated by the Hanwoo 50 K SNP beadchip. Results: The mean Genome estimated breeding values (GEBVs) estimated using the ssGBLUP methods for carcass weight (CWT), eye muscle area (EMA), back fat thickness (BFT), and marbling score (MS) were 7.348, 1.515, -0.355, and 0.040, respectively, while the accuracy of each trait was 0.749, 0.733, 0.769, and 0.768, respectively. When the correlation analysis between the GEBVs as a result of this study and the actual slaughter performance was confirmed, CWT, EMA, BFT, and MS were reported to be 0.519, 0.435, 0.444, and 0.543, respectively. Conclusions: Our results suggest that the ssGBLUP method enables a more accurate evaluation because it conducts a genetic evaluation of an individual using not only genotype information but also phenotypic information of the pedigree. Individual evaluation using the ssGBLUP method is considered effective for enhancing the genetic ability of farms and enabling accurate and rapid improvements. It is considered that if more pedigree information of reference population is collected for analysis, genetic ability can be evaluated more accurately.
Bibliography:https://www.e-jarb.org/journal/view.html?uid=2679&vmd=Full
ISSN:2671-4639
2671-4663
DOI:10.12750/JARB.38.4.268