Improving the method of linear-quadratic control over a physical model of vessel with azimuthal thrusters

The object of this research is the algorithms for controlling large-scale models of sea-based vehicles (SBVs). The subject of the research is a linear-quadratic method for controlling a model of the propulsion complex with azimuthal thrusters (ATs) in the aft part. The problem is the solution betwee...

Full description

Saved in:
Bibliographic Details
Published inEastern-European journal of enterprise technologies Vol. 1; no. 2 (121); pp. 49 - 71
Main Authors Budashko, Vitalii, Sandler, Albert, Khniunin, Sergii
Format Journal Article
LanguageEnglish
Published 28.02.2023
Online AccessGet full text
ISSN1729-3774
1729-4061
DOI10.15587/1729-4061.2023.273934

Cover

Loading…
More Information
Summary:The object of this research is the algorithms for controlling large-scale models of sea-based vehicles (SBVs). The subject of the research is a linear-quadratic method for controlling a model of the propulsion complex with azimuthal thrusters (ATs) in the aft part. The problem is the solution between the interdependent throws of surge, sway, and yaw speeds predicted by the linear controller. Input signals are the rotational speeds and the angles of ATs propeller thrusts with respect to the diametrical plane of SBVs. During the simulation, step responses of a closed system for overload and rotation speed are compared. Simulation of speed jumps showed an adequate response, in contrast to the speed of rotation of ATs, which showed a greater impact on the system than the orientation of ATs. When modeling the rate of yaw, the behavior of the ATs angle did not correspond to its limitations inherent in the device rotating at the appropriate speed. It is concluded that this is the result of linearization of the actuators, and the proposed solution is to implement the strengthening of the task to better adapt to the rotating behavior of ATs. Despite these problems, the simulation showed the potential of the model and controller for use in similar situations. Several modifications are also offered to significantly improve the model and simulations. One of the main changes that could be made is the implementation of a predictive gain during the linearization of the ATs control system. The practical significance of the results obtained is the fact that the quadratic optimization model is an effective and reliable technique in the process of designing SBVs of various configurations of steering devices for optimal control Об’єктом дослідження є алгоритми керування масштабними моделями транспортних засобів морського базування (ТЗМБ). Предметом дослідження є лінійно-квадратичний метод керування моделлю пропульсивного комплексу з азимутальними підрулюючими пристроями (АПП) у кормовій частині. Проблема полягає у розв’язці між взаємозалежними кидками швидкостей повздовжнього руху, дрейфу та нишпорення, що прогнозуються лінійним контролером. Вхідними сигналами є швидкості обертання і кути упорів гвинтів АПП по відношенню до діаметральної площини ТЗМБ. Під час моделювання порівнюються ступінчасті відгуки замкнутої системи на перевантаження та швидкість повороту. Моделювання стрибків швидкості показало адекватну реакцію на відміну від частоти обертання АПП, яка виявила більший вплив на систему, ніж орієнтація АПП. При моделюванні швидкості нишпорення поведінка кута АПП не відповідала його обмеженням, властивим пристрою, що обертається з відповідною частотою. Робиться висновок, що це є результатом лінеаризації виконавчих механізмів, а запропоноване рішення полягає в тому, щоб реалізувати посилення завдання для кращого пристосування до обертової поведінки АПП. Незважаючи на ці проблеми, моделювання показало потенціал моделі та контролера для використання у подібних ситуаціях. Також пропонується кілька модифікацій для значного покращення моделі та симуляцій. Однією з основних змін, яку можна було б зробити, є реалізація прогнозуючого посилення при лінеаризації системи управління АПП. Практична значущість отриманих результатів полягає в тому, що модель квадратичної оптимізації є ефективною та надійною технікою в процесі проєктування ТЗМБ різноманітної конфігурації підрулюючих пристроїв для оптимального керування
ISSN:1729-3774
1729-4061
DOI:10.15587/1729-4061.2023.273934