Multi-Scale Hyperbolic Contrastive Learning for Cross-Subject EEG Emotion Recognition

Electroencephalography (EEG) serves as a reliable and objective signal for affective computing applications. However, individual differences in EEG signals pose a significant challenge for emotion recognition tasks across subjects. To address this, we proposed a novel method called Multi-Scale Hyper...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on affective computing Vol. 16; no. 3; pp. 1716 - 1731
Main Authors Chang, Jiang, Zhang, Zhixin, Qian, Yuhua, Lin, Pan
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1949-3045
1949-3045
DOI10.1109/TAFFC.2025.3535542

Cover

Abstract Electroencephalography (EEG) serves as a reliable and objective signal for affective computing applications. However, individual differences in EEG signals pose a significant challenge for emotion recognition tasks across subjects. To address this, we proposed a novel method called Multi-Scale Hyperbolic Contrastive Learning (MSHCL), which leverages event-relatedness to learn subject-invariant representations. MSHCL employs contrastive losses at two different scales-emotion and stimulus-to effectively capture complex EEG patterns within a hyperbolic space hierarchy. Our method is evaluated on three datasets: SEED, MPED, and FACED. It achieves 89.3% accuracy on the three-class task for SEED, 38.8% on the seven-class task for MPED, and 77.0% and 45.7% on the binary and nine-class tasks for FACED in cross-subject emotion recognition. These results demonstrate that the proposed MSHCL method superior performance over other baselines and its effectiveness in learning subject-invariant representations.
AbstractList Electroencephalography (EEG) serves as a reliable and objective signal for affective computing applications. However, individual differences in EEG signals pose a significant challenge for emotion recognition tasks across subjects. To address this, we proposed a novel method called Multi-Scale Hyperbolic Contrastive Learning (MSHCL), which leverages event-relatedness to learn subject-invariant representations. MSHCL employs contrastive losses at two different scales-emotion and stimulus-to effectively capture complex EEG patterns within a hyperbolic space hierarchy. Our method is evaluated on three datasets: SEED, MPED, and FACED. It achieves 89.3% accuracy on the three-class task for SEED, 38.8% on the seven-class task for MPED, and 77.0% and 45.7% on the binary and nine-class tasks for FACED in cross-subject emotion recognition. These results demonstrate that the proposed MSHCL method superior performance over other baselines and its effectiveness in learning subject-invariant representations.
Author Lin, Pan
Qian, Yuhua
Zhang, Zhixin
Chang, Jiang
Author_xml – sequence: 1
  givenname: Jiang
  orcidid: 0000-0001-9726-902X
  surname: Chang
  fullname: Chang, Jiang
  email: changj@sxu.edu.cn
  organization: Institute of Big Data Science and Industry, School of Computer and Information Technology, Shanxi University, Taiyuan, China
– sequence: 2
  givenname: Zhixin
  orcidid: 0009-0006-6520-4129
  surname: Zhang
  fullname: Zhang, Zhixin
  email: zzx20221255@163.com
  organization: Institute of Big Data Science and Industry, School of Computer and Information Technology, Shanxi University, Taiyuan, China
– sequence: 3
  givenname: Yuhua
  orcidid: 0000-0001-6772-4247
  surname: Qian
  fullname: Qian, Yuhua
  email: jinchengqyh@126.com
  organization: Institute of Big Data Science and Industry, School of Computer and Information Technology, Shanxi University, Taiyuan, China
– sequence: 4
  givenname: Pan
  orcidid: 0000-0001-7473-905X
  surname: Lin
  fullname: Lin, Pan
  email: linpan@hunnu.edu.cn
  organization: Center for Mind & Brain Sciences and institute of Interdisciplinary Studies, Hunan Normal University, Changsha, Hunan, China
BookMark eNpNkFFrwjAUhcPYYM75B8YeAnuuS5qkbR6lVB04BlOfQxtvJVITl6YD__3a6YP35d6Hc849fE_o3joLCL1QMqWUyPfNbD7PpzGJxZQJJgSP79CISi4jRri4v7kf0aRtD6QfxlgSpyO0_eyaYKK1LhvAy_MJfOUao3HubPBlG8wv4BWU3hq7x7XzOPeubaN1Vx1AB1wUC1wcXTDO4m_Qbm_NcD-jh7psWphc9xht58UmX0arr8VHPltFmiZxiABEKahklLOM04r0DUVd1rXWGdGSprBLJZHACQeQVO6qjCZpRmUFOs1IUrExervknrz76aAN6uA6b_uXisU8FZzSJOtV8UWlh-4eanXy5lj6s6JEDQTVP0E1EFRXgr3p9WIyAHBjyETSR7M_xgttng
CODEN ITACBQ
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TAFFC.2025.3535542
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Computer and Information Systems Abstracts
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1949-3045
EndPage 1731
ExternalDocumentID 10_1109_TAFFC_2025_3535542
10856324
Genre orig-research
GrantInformation_xml – fundername: Shanxi Province Foundation for Youths
  grantid: 20210302124556
– fundername: Fundamental Research Program of Shanxi Province
  grantid: 202303021211023; 202303021221075
– fundername: Central Guidance for Local Scientific and Technological Development Funds
  grantid: YDZJSX20231B001
– fundername: Science and Technology Major Project of Shanxi
  grantid: 202201020101006
– fundername: National Natural Science Foundation of China
  grantid: 62071177
  funderid: 10.13039/501100001809
– fundername: special fund for Science and Technology lnnovation Teams of Shanxi Province
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
AENEX
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
HZ~
IEDLZ
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
PQQKQ
RIA
RIE
RNI
RZB
AAYXX
CITATION
RIG
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c162t-ee5a5193143841b00455faffcc80c917ed7909e404ee919db8167819bec7806b3
IEDL.DBID RIE
ISSN 1949-3045
IngestDate Mon Sep 08 00:00:20 EDT 2025
Tue Jul 01 02:57:56 EDT 2025
Wed Sep 10 07:40:58 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c162t-ee5a5193143841b00455faffcc80c917ed7909e404ee919db8167819bec7806b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-6772-4247
0009-0006-6520-4129
0000-0001-7473-905X
0000-0001-9726-902X
PQID 3247541168
PQPubID 2040414
PageCount 16
ParticipantIDs ieee_primary_10856324
crossref_primary_10_1109_TAFFC_2025_3535542
proquest_journals_3247541168
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-00-00
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – year: 2025
  text: 2025-00-00
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE transactions on affective computing
PublicationTitleAbbrev TAFFC
PublicationYear 2025
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
SSID ssj0000333627
Score 2.3526292
Snippet Electroencephalography (EEG) serves as a reliable and objective signal for affective computing applications. However, individual differences in EEG signals...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Index Database
Publisher
StartPage 1716
SubjectTerms Accuracy
Affective computing
Brain modeling
Computational modeling
Contrastive learning
cross-subject
Data models
EEG
Electroencephalography
Emotion recognition
Emotions
Feature extraction
Hyperbolic coordinates
hyperbolic embedding
Invariants
Learning
Representations
Vectors
Title Multi-Scale Hyperbolic Contrastive Learning for Cross-Subject EEG Emotion Recognition
URI https://ieeexplore.ieee.org/document/10856324
https://www.proquest.com/docview/3247541168
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELZoJxbKo4hCQR7YkFsnsZN4rKqWCokO0ErdIsc5MyC1qE0Xfj0-J0E8hMQWRU7k3He-V-5ByK3UKkplkjAIQTFh45zpPLQsTjUHKRJjDTqKj_N4thQPK7mqi9V9LQwA-OQzGOCl_5dfbMweQ2VDzJTH9uIt0nJ8VhVrfQZUeBQ5YZw0hTFcDRej6XTsXMBQDiKJejX8pnz8NJVfItjrlWmHzJsdVekkr4N9mQ_M-49mjf_e8jE5qi1MOqpY4oQcwPqUdJrpDbQ-zGdk6Wtv2bMDCejMuaPbHHsEU-xXtdU7FIO07r76Qp1pS8f4TcxJGgzd0Mnknk6qGUD0qclC2qy7ZDmdLMYzVg9ZYCaIw5IBSI1WHI5BFwEeYimtttaYlBvny0GRKK5AcAGgAlXkaeD0W6Ac9knK4zw6J-31Zg0XhNpCC6sTYbQuhATtVqVxrAulrOUyTHvkrqF-9lb10si8D8JV5rHKEKusxqpHukjOLysrSvZIv0Esq8_bLnP3EymCIE4v_3jsihzi26voSZ-0y-0erp09UeY3no8-AHwfyHY
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT-MwEB7xOMCFx8KK8vRhb8jFSewkPqKqpbx62G0lbpHjjDkgtai0F349HidBPLQStyhyFGfG88zMNwB_lNFJrrKMY4yaS5eW3JSx42luBCqZWWcpULwfpcOJvHlQD02zeuiFQcRQfIZdugz_8quZXVKq7IIq5QlefBXWveGXqm7Xek-piCTx6jhrW2OEvhhfDgY9HwTGqpsosqzxJ_MT5ql8U8LBsgy2YdTuqS4oeeouF2XXvn6Ba_zxpndgq_Ex2WV9KHZhBae_YLud38Aacd6DSei-5f88m5ANfUA6LwklmBFi1dy8kCJkDf7qI_POLevRN3Gvayh5w_r9K9avpwCxv20d0my6D5NBf9wb8mbMArdRGi84ojLkx9EgdBmRGCvljHPW5sL6aA6rTAuNUkhEHemqzCNv4SLtuZ_lIi2T37A2nU3xAJirjHQmk9aYSio0flWepqbS2jmh4rwD5y31i-caTaMIUYjQReBVQbwqGl51YJ_I-WFlTckOHLccKxqJeyn8_UzJKErzw_88dgYbw_H9XXF3Pbo9gk16U51LOYa1xXyJJ967WJSn4Uy9ASbHy8M
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-Scale+Hyperbolic+Contrastive+Learning+for+Cross-Subject+EEG+Emotion+Recognition&rft.jtitle=IEEE+transactions+on+affective+computing&rft.au=Chang%2C+Jiang&rft.au=Zhang%2C+Zhixin&rft.au=Qian%2C+Yuhua&rft.au=Pan%2C+Lin&rft.date=2025&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.eissn=1949-3045&rft.volume=16&rft.issue=3&rft.spage=1716&rft.epage=1731&rft_id=info:doi/10.1109%2FTAFFC.2025.3535542&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1949-3045&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1949-3045&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1949-3045&client=summon