Multi-Scale Hyperbolic Contrastive Learning for Cross-Subject EEG Emotion Recognition
Electroencephalography (EEG) serves as a reliable and objective signal for affective computing applications. However, individual differences in EEG signals pose a significant challenge for emotion recognition tasks across subjects. To address this, we proposed a novel method called Multi-Scale Hyper...
Saved in:
Published in | IEEE transactions on affective computing Vol. 16; no. 3; pp. 1716 - 1731 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 1949-3045 1949-3045 |
DOI | 10.1109/TAFFC.2025.3535542 |
Cover
Abstract | Electroencephalography (EEG) serves as a reliable and objective signal for affective computing applications. However, individual differences in EEG signals pose a significant challenge for emotion recognition tasks across subjects. To address this, we proposed a novel method called Multi-Scale Hyperbolic Contrastive Learning (MSHCL), which leverages event-relatedness to learn subject-invariant representations. MSHCL employs contrastive losses at two different scales-emotion and stimulus-to effectively capture complex EEG patterns within a hyperbolic space hierarchy. Our method is evaluated on three datasets: SEED, MPED, and FACED. It achieves 89.3% accuracy on the three-class task for SEED, 38.8% on the seven-class task for MPED, and 77.0% and 45.7% on the binary and nine-class tasks for FACED in cross-subject emotion recognition. These results demonstrate that the proposed MSHCL method superior performance over other baselines and its effectiveness in learning subject-invariant representations. |
---|---|
AbstractList | Electroencephalography (EEG) serves as a reliable and objective signal for affective computing applications. However, individual differences in EEG signals pose a significant challenge for emotion recognition tasks across subjects. To address this, we proposed a novel method called Multi-Scale Hyperbolic Contrastive Learning (MSHCL), which leverages event-relatedness to learn subject-invariant representations. MSHCL employs contrastive losses at two different scales-emotion and stimulus-to effectively capture complex EEG patterns within a hyperbolic space hierarchy. Our method is evaluated on three datasets: SEED, MPED, and FACED. It achieves 89.3% accuracy on the three-class task for SEED, 38.8% on the seven-class task for MPED, and 77.0% and 45.7% on the binary and nine-class tasks for FACED in cross-subject emotion recognition. These results demonstrate that the proposed MSHCL method superior performance over other baselines and its effectiveness in learning subject-invariant representations. |
Author | Lin, Pan Qian, Yuhua Zhang, Zhixin Chang, Jiang |
Author_xml | – sequence: 1 givenname: Jiang orcidid: 0000-0001-9726-902X surname: Chang fullname: Chang, Jiang email: changj@sxu.edu.cn organization: Institute of Big Data Science and Industry, School of Computer and Information Technology, Shanxi University, Taiyuan, China – sequence: 2 givenname: Zhixin orcidid: 0009-0006-6520-4129 surname: Zhang fullname: Zhang, Zhixin email: zzx20221255@163.com organization: Institute of Big Data Science and Industry, School of Computer and Information Technology, Shanxi University, Taiyuan, China – sequence: 3 givenname: Yuhua orcidid: 0000-0001-6772-4247 surname: Qian fullname: Qian, Yuhua email: jinchengqyh@126.com organization: Institute of Big Data Science and Industry, School of Computer and Information Technology, Shanxi University, Taiyuan, China – sequence: 4 givenname: Pan orcidid: 0000-0001-7473-905X surname: Lin fullname: Lin, Pan email: linpan@hunnu.edu.cn organization: Center for Mind & Brain Sciences and institute of Interdisciplinary Studies, Hunan Normal University, Changsha, Hunan, China |
BookMark | eNpNkFFrwjAUhcPYYM75B8YeAnuuS5qkbR6lVB04BlOfQxtvJVITl6YD__3a6YP35d6Hc849fE_o3joLCL1QMqWUyPfNbD7PpzGJxZQJJgSP79CISi4jRri4v7kf0aRtD6QfxlgSpyO0_eyaYKK1LhvAy_MJfOUao3HubPBlG8wv4BWU3hq7x7XzOPeubaN1Vx1AB1wUC1wcXTDO4m_Qbm_NcD-jh7psWphc9xht58UmX0arr8VHPltFmiZxiABEKahklLOM04r0DUVd1rXWGdGSprBLJZHACQeQVO6qjCZpRmUFOs1IUrExervknrz76aAN6uA6b_uXisU8FZzSJOtV8UWlh-4eanXy5lj6s6JEDQTVP0E1EFRXgr3p9WIyAHBjyETSR7M_xgttng |
CODEN | ITACBQ |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
DBID | 97E RIA RIE AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
DOI | 10.1109/TAFFC.2025.3535542 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Computer and Information Systems Abstracts |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1949-3045 |
EndPage | 1731 |
ExternalDocumentID | 10_1109_TAFFC_2025_3535542 10856324 |
Genre | orig-research |
GrantInformation_xml | – fundername: Shanxi Province Foundation for Youths grantid: 20210302124556 – fundername: Fundamental Research Program of Shanxi Province grantid: 202303021211023; 202303021221075 – fundername: Central Guidance for Local Scientific and Technological Development Funds grantid: YDZJSX20231B001 – fundername: Science and Technology Major Project of Shanxi grantid: 202201020101006 – fundername: National Natural Science Foundation of China grantid: 62071177 funderid: 10.13039/501100001809 – fundername: special fund for Science and Technology lnnovation Teams of Shanxi Province |
GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABJNI ABQJQ ABVLG AENEX AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD HZ~ IEDLZ IFIPE IPLJI JAVBF M43 O9- OCL PQQKQ RIA RIE RNI RZB AAYXX CITATION RIG 7SC 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c162t-ee5a5193143841b00455faffcc80c917ed7909e404ee919db8167819bec7806b3 |
IEDL.DBID | RIE |
ISSN | 1949-3045 |
IngestDate | Mon Sep 08 00:00:20 EDT 2025 Tue Jul 01 02:57:56 EDT 2025 Wed Sep 10 07:40:58 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c162t-ee5a5193143841b00455faffcc80c917ed7909e404ee919db8167819bec7806b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-6772-4247 0009-0006-6520-4129 0000-0001-7473-905X 0000-0001-9726-902X |
PQID | 3247541168 |
PQPubID | 2040414 |
PageCount | 16 |
ParticipantIDs | ieee_primary_10856324 crossref_primary_10_1109_TAFFC_2025_3535542 proquest_journals_3247541168 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-00-00 |
PublicationDateYYYYMMDD | 2025-01-01 |
PublicationDate_xml | – year: 2025 text: 2025-00-00 |
PublicationDecade | 2020 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE transactions on affective computing |
PublicationTitleAbbrev | TAFFC |
PublicationYear | 2025 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
SSID | ssj0000333627 |
Score | 2.3526292 |
Snippet | Electroencephalography (EEG) serves as a reliable and objective signal for affective computing applications. However, individual differences in EEG signals... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 1716 |
SubjectTerms | Accuracy Affective computing Brain modeling Computational modeling Contrastive learning cross-subject Data models EEG Electroencephalography Emotion recognition Emotions Feature extraction Hyperbolic coordinates hyperbolic embedding Invariants Learning Representations Vectors |
Title | Multi-Scale Hyperbolic Contrastive Learning for Cross-Subject EEG Emotion Recognition |
URI | https://ieeexplore.ieee.org/document/10856324 https://www.proquest.com/docview/3247541168 |
Volume | 16 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELZoJxbKo4hCQR7YkFsnsZN4rKqWCokO0ErdIsc5MyC1qE0Xfj0-J0E8hMQWRU7k3He-V-5ByK3UKkplkjAIQTFh45zpPLQsTjUHKRJjDTqKj_N4thQPK7mqi9V9LQwA-OQzGOCl_5dfbMweQ2VDzJTH9uIt0nJ8VhVrfQZUeBQ5YZw0hTFcDRej6XTsXMBQDiKJejX8pnz8NJVfItjrlWmHzJsdVekkr4N9mQ_M-49mjf_e8jE5qi1MOqpY4oQcwPqUdJrpDbQ-zGdk6Wtv2bMDCejMuaPbHHsEU-xXtdU7FIO07r76Qp1pS8f4TcxJGgzd0Mnknk6qGUD0qclC2qy7ZDmdLMYzVg9ZYCaIw5IBSI1WHI5BFwEeYimtttaYlBvny0GRKK5AcAGgAlXkaeD0W6Ac9knK4zw6J-31Zg0XhNpCC6sTYbQuhATtVqVxrAulrOUyTHvkrqF-9lb10si8D8JV5rHKEKusxqpHukjOLysrSvZIv0Esq8_bLnP3EymCIE4v_3jsihzi26voSZ-0y-0erp09UeY3no8-AHwfyHY |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT-MwEB7xOMCFx8KK8vRhb8jFSewkPqKqpbx62G0lbpHjjDkgtai0F349HidBPLQStyhyFGfG88zMNwB_lNFJrrKMY4yaS5eW3JSx42luBCqZWWcpULwfpcOJvHlQD02zeuiFQcRQfIZdugz_8quZXVKq7IIq5QlefBXWveGXqm7Xek-piCTx6jhrW2OEvhhfDgY9HwTGqpsosqzxJ_MT5ql8U8LBsgy2YdTuqS4oeeouF2XXvn6Ba_zxpndgq_Ex2WV9KHZhBae_YLud38Aacd6DSei-5f88m5ANfUA6LwklmBFi1dy8kCJkDf7qI_POLevRN3Gvayh5w_r9K9avpwCxv20d0my6D5NBf9wb8mbMArdRGi84ojLkx9EgdBmRGCvljHPW5sL6aA6rTAuNUkhEHemqzCNv4SLtuZ_lIi2T37A2nU3xAJirjHQmk9aYSio0flWepqbS2jmh4rwD5y31i-caTaMIUYjQReBVQbwqGl51YJ_I-WFlTckOHLccKxqJeyn8_UzJKErzw_88dgYbw_H9XXF3Pbo9gk16U51LOYa1xXyJJ967WJSn4Uy9ASbHy8M |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-Scale+Hyperbolic+Contrastive+Learning+for+Cross-Subject+EEG+Emotion+Recognition&rft.jtitle=IEEE+transactions+on+affective+computing&rft.au=Chang%2C+Jiang&rft.au=Zhang%2C+Zhixin&rft.au=Qian%2C+Yuhua&rft.au=Pan%2C+Lin&rft.date=2025&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.eissn=1949-3045&rft.volume=16&rft.issue=3&rft.spage=1716&rft.epage=1731&rft_id=info:doi/10.1109%2FTAFFC.2025.3535542&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1949-3045&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1949-3045&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1949-3045&client=summon |