Multi-Scale Hyperbolic Contrastive Learning for Cross-Subject EEG Emotion Recognition

Electroencephalography (EEG) serves as a reliable and objective signal for affective computing applications. However, individual differences in EEG signals pose a significant challenge for emotion recognition tasks across subjects. To address this, we proposed a novel method called Multi-Scale Hyper...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on affective computing Vol. 16; no. 3; pp. 1 - 16
Main Authors Chang, Jiang, Zhang, Zhixin, Qian, Yuhua, Lin, Pan
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1949-3045
1949-3045
DOI10.1109/TAFFC.2025.3535542

Cover

Loading…
More Information
Summary:Electroencephalography (EEG) serves as a reliable and objective signal for affective computing applications. However, individual differences in EEG signals pose a significant challenge for emotion recognition tasks across subjects. To address this, we proposed a novel method called Multi-Scale Hyperbolic Contrastive Learning (MSHCL), which leverages event-relatedness to learn subject-invariant representations. MSHCL employs contrastive losses at two different scales-emotion and stimulus-to effectively capture complex EEG patterns within a hyperbolic space hierarchy. Our method is evaluated on three datasets: SEED, MPED, and FACED. It achieves 89.3% accuracy on the three-class task for SEED, 38.8% on the seven-class task for MPED, and 77.0% and 45.7% on the binary and nine-class tasks for FACED in cross-subject emotion recognition. These results demonstrate that the proposed MSHCL method superior performance over other baselines and its effectiveness in learning subject-invariant representations. The source code is available at https://github.com/JiangChang-BRAIN/MSHCL .
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1949-3045
1949-3045
DOI:10.1109/TAFFC.2025.3535542