A Black Phosphorus–Graphite Composite Anode for Li‐/Na‐/K‐Ion Batteries

Black phosphorus (BP) is a desirable anode material for alkali metal ion storage owing to its high electronic/ionic conductivity and theoretical capacity. In‐depth understanding of the redox reactions between BP and the alkali metal ions is key to reveal the potential and limitations of BP, and thus...

Full description

Saved in:
Bibliographic Details
Published inAngewandte Chemie Vol. 132; no. 6; pp. 2338 - 2342
Main Authors Jin, Hongchang, Wang, Haiyun, Qi, Zhikai, Bin, De‐Shan, Zhang, Taiming, Wan, Yangyang, Chen, Jiaye, Chuang, Chenghao, Lu, Ying‐Rui, Chan, Ting‐Shan, Ju, Huanxin, Cao, An‐Min, Yan, Wensheng, Wu, Xiaojun, Ji, Hengxing, Wan, Li‐Jun
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 03.02.2020
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Black phosphorus (BP) is a desirable anode material for alkali metal ion storage owing to its high electronic/ionic conductivity and theoretical capacity. In‐depth understanding of the redox reactions between BP and the alkali metal ions is key to reveal the potential and limitations of BP, and thus to guide the design of BP‐based composites for high‐performance alkali metal ion batteries. Comparative studies of the electrochemical reactions of Li+, Na+, and K+ with BP were performed. Ex situ X‐ray absorption near‐edge spectroscopy combined with theoretical calculation reveal the lowest utilization of BP for K+ storage than for Na+ and Li+, which is ascribed to the highest formation energy and the lowest ion diffusion coefficient of the final potassiation product K3P, compared with Li3P and Na3P. As a result, restricting the formation of K3P by limiting the discharge voltage achieves a gravimetric capacity of 1300 mAh g−1 which retains at 600 mAh g−1 after 50 cycles at 0.25 A g−1. Die Energiespeichereigenschaften von schwarzem Phosphor (BP) wurden im Zusammenhang mit Li/Na/K‐Ionen‐Batterien untersucht. BP zeigt die geringste Kapazität für die Speicherung von K+ gegenüber der von Na+ und Li+, was auf die höchste Bildungsenergie und den niedrigsten Ionendiffusionskoeffizienten des finalen Produkts K3P gegenüber Li3P und Na3P zurückgeführt wird.
Bibliography:These authors contributed equally to this work.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0044-8249
1521-3757
DOI:10.1002/ange.201913129