Molecular Engineering of Conjugated Acetylenic Polymers for Efficient Cocatalyst‐free Photoelectrochemical Water Reduction
Conjugated polymers featuring tunable band gaps/positions and tailored active centers, are attractive photoelectrode materials for water splitting. However, their exploration falls far behind their inorganic counterparts. Herein, we demonstrate a molecular engineering strategy for the tailoring arom...
Saved in:
Published in | Angewandte Chemie Vol. 131; no. 30; pp. 10476 - 10482 |
---|---|
Main Authors | , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
22.07.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Conjugated polymers featuring tunable band gaps/positions and tailored active centers, are attractive photoelectrode materials for water splitting. However, their exploration falls far behind their inorganic counterparts. Herein, we demonstrate a molecular engineering strategy for the tailoring aromatic units of conjugated acetylenic polymers from benzene‐ to thiophene‐based. The polarized thiophene‐based monomers of conjugated acetylenic polymers can largely extend the light absorption and promote charge separation/transport. The C≡C bonds are activated for catalyzing water reduction. Using on‐surface Glaser polycondensation, as‐fabricated poly(2,5‐diethynylthieno[3,2‐b]thiophene) on commercial Cu foam exhibits a record H2‐evolution photocurrent density of 370 μA cm−2 at 0.3 V vs. reversible hydrogen electrode among current cocatalyst‐free organic photocathodes (1–100 μA cm−2). This approach to modulate the optical, charge transfer, and catalytic properties of conjugated polymers paves a critical way toward high‐activity organic photoelectrodes.
Photoelektrodenmaterialien für die Wasserspaltung: Poly(2,5‐diethinylthieno[3,2‐b]thiophen) auf Cu‐Schaum erreicht in der Wasserspaltung eine Rekord‐Photostromdichte von 370 μA cm−2 – dies im Vergleich zu aktuellen cokatalysatorfreien organischen Photokathoden, die 1 bis 100 μA cm−2 erzielen. Die Ergebnisse bereiten den Weg zur Entwicklung hochaktiver organischer Photoelektroden. |
---|---|
Bibliography: | These authors contributed equally to this work. |
ISSN: | 0044-8249 1521-3757 |
DOI: | 10.1002/ange.201904978 |