Lithiophilic Faceted Cu(100) Surfaces: High Utilization of Host Surface and Cavities for Lithium Metal Anodes

Lithium metal anodes suffer from poor cycling stability and potential safety hazards. To alleviate these problems, Li thin‐film anodes prepared on current collectors (CCs) and Li‐free types of anodes that involve direct Li plating on CCs have received increasing attention. In this study, the atomic‐...

Full description

Saved in:
Bibliographic Details
Published inAngewandte Chemie Vol. 131; no. 10; pp. 3124 - 3128
Main Authors Gu, Yu, Xu, Hong‐Yu, Zhang, Xia‐Guang, Wang, Wei‐Wei, He, Jun‐Wu, Tang, Shuai, Yan, Jia‐Wei, Wu, De‐Yin, Zheng, Ming‐Sen, Dong, Quan‐Feng, Mao, Bing‐Wei
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 04.03.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Lithium metal anodes suffer from poor cycling stability and potential safety hazards. To alleviate these problems, Li thin‐film anodes prepared on current collectors (CCs) and Li‐free types of anodes that involve direct Li plating on CCs have received increasing attention. In this study, the atomic‐scale design of Cu‐CC surface lithiophilicity based on surface lattice matching of the bcc Li(110) and fcc Cu(100) faces as well as electrochemical achievement of Cu(100)‐preferred surfaces for smooth Li deposition with a low nucleation barrier is reported. Additionally, a purposely designed solid–electrolyte interphase is created for Li anodes prepared on CCs. Not only is a smooth planar Li thin film prepared, but a uniform Li plating/stripping on the skeleton of 3D CCs is achieved as well by high utilization of the surface and cavities of the 3D CCs. This work demonstrates surface electrochemistry approaches to construct stable Li metal–electrolyte interphases towards practical applications of Li anodes prepared on CCs. Mit Lithium in Verbindung: Oberflächen‐Lithiophilie kann auf flachen und dreidimensionalen Cu‐Substraten für Li‐Anoden erzeugt werden. Die Gitterübereinstimmung von Cu(100) und Li(110) ermöglicht die Abscheidung dünner Li‐Filme und die Erzeugung ultraflacher ultradünner Elektrodengrenzschichten (SEI) auf Cu. Dabei können nicht nur direkte Oberflächen, sondern auch Hohlräume effizient genutzt werden.
AbstractList Lithium metal anodes suffer from poor cycling stability and potential safety hazards. To alleviate these problems, Li thin‐film anodes prepared on current collectors (CCs) and Li‐free types of anodes that involve direct Li plating on CCs have received increasing attention. In this study, the atomic‐scale design of Cu‐CC surface lithiophilicity based on surface lattice matching of the bcc Li(110) and fcc Cu(100) faces as well as electrochemical achievement of Cu(100)‐preferred surfaces for smooth Li deposition with a low nucleation barrier is reported. Additionally, a purposely designed solid–electrolyte interphase is created for Li anodes prepared on CCs. Not only is a smooth planar Li thin film prepared, but a uniform Li plating/stripping on the skeleton of 3D CCs is achieved as well by high utilization of the surface and cavities of the 3D CCs. This work demonstrates surface electrochemistry approaches to construct stable Li metal–electrolyte interphases towards practical applications of Li anodes prepared on CCs. Mit Lithium in Verbindung: Oberflächen‐Lithiophilie kann auf flachen und dreidimensionalen Cu‐Substraten für Li‐Anoden erzeugt werden. Die Gitterübereinstimmung von Cu(100) und Li(110) ermöglicht die Abscheidung dünner Li‐Filme und die Erzeugung ultraflacher ultradünner Elektrodengrenzschichten (SEI) auf Cu. Dabei können nicht nur direkte Oberflächen, sondern auch Hohlräume effizient genutzt werden.
Lithium metal anodes suffer from poor cycling stability and potential safety hazards. To alleviate these problems, Li thin‐film anodes prepared on current collectors (CCs) and Li‐free types of anodes that involve direct Li plating on CCs have received increasing attention. In this study, the atomic‐scale design of Cu‐CC surface lithiophilicity based on surface lattice matching of the bcc Li(110) and fcc Cu(100) faces as well as electrochemical achievement of Cu(100)‐preferred surfaces for smooth Li deposition with a low nucleation barrier is reported. Additionally, a purposely designed solid–electrolyte interphase is created for Li anodes prepared on CCs. Not only is a smooth planar Li thin film prepared, but a uniform Li plating/stripping on the skeleton of 3D CCs is achieved as well by high utilization of the surface and cavities of the 3D CCs. This work demonstrates surface electrochemistry approaches to construct stable Li metal–electrolyte interphases towards practical applications of Li anodes prepared on CCs.
Author Tang, Shuai
Gu, Yu
Yan, Jia‐Wei
Wu, De‐Yin
Dong, Quan‐Feng
Zheng, Ming‐Sen
He, Jun‐Wu
Zhang, Xia‐Guang
Mao, Bing‐Wei
Wang, Wei‐Wei
Xu, Hong‐Yu
Author_xml – sequence: 1
  givenname: Yu
  surname: Gu
  fullname: Gu, Yu
  organization: Xiamen University
– sequence: 2
  givenname: Hong‐Yu
  surname: Xu
  fullname: Xu, Hong‐Yu
  organization: Xiamen University
– sequence: 3
  givenname: Xia‐Guang
  surname: Zhang
  fullname: Zhang, Xia‐Guang
  organization: Xiamen University
– sequence: 4
  givenname: Wei‐Wei
  surname: Wang
  fullname: Wang, Wei‐Wei
  organization: Xiamen University
– sequence: 5
  givenname: Jun‐Wu
  surname: He
  fullname: He, Jun‐Wu
  organization: Xiamen University
– sequence: 6
  givenname: Shuai
  surname: Tang
  fullname: Tang, Shuai
  organization: Xiamen University
– sequence: 7
  givenname: Jia‐Wei
  surname: Yan
  fullname: Yan, Jia‐Wei
  organization: Xiamen University
– sequence: 8
  givenname: De‐Yin
  surname: Wu
  fullname: Wu, De‐Yin
  email: dywu@xmu.edu.cn
  organization: Xiamen University
– sequence: 9
  givenname: Ming‐Sen
  surname: Zheng
  fullname: Zheng, Ming‐Sen
  organization: Xiamen University
– sequence: 10
  givenname: Quan‐Feng
  surname: Dong
  fullname: Dong, Quan‐Feng
  organization: Xiamen University
– sequence: 11
  givenname: Bing‐Wei
  orcidid: 0000-0002-9015-0162
  surname: Mao
  fullname: Mao, Bing‐Wei
  email: bwmao@xmu.edu.cn
  organization: Xiamen University
BookMark eNqFkEtLAzEURoMo2Fa3rgNudDE1yeQx466UPoSqC-16yMwkbcp0UpOMUn-909YHCOLqwuWc73K_Ljiuba0AuMCojxEiN7JeqD5BOMGEkfgIdDAjOIoFE8eggxClUUJoegq63q8QQpyItAPWMxOWxm6WpjIFHMtCBVXCYXPVRl7Dp8bpduVv4dQslnAeWupdBmNraDWcWh--ECjrVpOvJhjlobYO7oObNbxXQVZwUNtS-TNwomXl1fnn7IH5ePQ8nEazx8ndcDCLCsxJHGktOBc8R5hiFTPKUkzKXPKEp5omAucp01QiVKhE0pJxopRgUiIS6zLHBYp74PKQu3H2pVE-ZCvbuLo9mRGcMC4SEactRQ9U4az3TumsMGH_XXDSVBlG2a7YbFds9l1sq_V_aRtn1tJt_xbSg_BmKrX9h84GD5PRj_sBgzaMWQ
CitedBy_id crossref_primary_10_1002_anie_201912217
crossref_primary_10_1002_advs_202002144
crossref_primary_10_1007_s41918_022_00158_2
crossref_primary_10_1016_j_xcrp_2022_101164
crossref_primary_10_1002_ejoc_202000074
crossref_primary_10_1002_ange_201912217
crossref_primary_10_1002_anie_202000162
crossref_primary_10_1002_ange_202000162
Cites_doi 10.1038/nenergy.2016.128
10.1002/ange.201808154
10.1021/ja312241y
10.1149/MA2018-02/5/309
10.1038/s41467-018-03466-8
10.1021/acsami.6b08775
10.1039/C3EE40795K
10.1021/jacs.7b01763
10.1016/j.electacta.2016.02.102
10.1002/ange.200802248
10.1002/adma.201802156
10.1039/C7EE02555F
10.1002/ange.201805456
10.1002/adma.201705830
10.1021/acsami.8b07362
10.1038/ncomms9058
10.1021/acs.chemrev.7b00115
10.1002/anie.201710806
10.1126/science.aap8787
10.1021/jacs.5b09385
10.1038/nenergy.2016.10
10.1038/nnano.2014.152
10.1002/aenm.201502151
10.1002/adfm.201602353
10.1038/nenergy.2016.114
10.1126/science.aam6014
10.1016/j.chempr.2017.01.003
10.1002/anie.201808154
10.1007/s12274-017-1596-1
10.1002/aenm.201800635
10.1002/celc.201800907
10.1002/anie.200802248
10.1002/anie.201805456
10.1016/j.ensm.2018.05.021
10.1073/pnas.1518188113
10.1038/nnano.2017.16
10.1002/ange.201710806
10.1002/aenm.201703404
ContentType Journal Article
Copyright 2019 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2019 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim
DBID AAYXX
CITATION
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1002/ange.201812523
DatabaseName CrossRef
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList
Materials Research Database
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3757
EndPage 3128
ExternalDocumentID 10_1002_ange_201812523
ANGE201812523
Genre shortCommunication
GrantInformation_xml – fundername: Ministry of Science and Technology of the People's Republic of China
  funderid: 2015CB251102; 2015CB932303; 2012CB932902
– fundername: National Natural Science Foundation of China
  funderid: 21533006; 21621091; U1805254
GroupedDBID -~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCUC
ACCZN
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACUHS
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFRAH
AFWVQ
AGHNM
AGXDD
AGYGG
AHBTC
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
ROL
RX1
RYL
SUPJJ
TN5
TUS
UB1
UPT
V2E
W8V
W99
WBFHL
WBKPD
WIH
WIK
WJL
WOHZO
WQJ
WXSBR
WYISQ
XG1
XV2
Y6R
ZZTAW
~IA
~WT
AAHHS
AAYXX
ACCFJ
ADZOD
AEEZP
AEQDE
AIWBW
AJBDE
CITATION
7SR
7U5
8BQ
8FD
JG9
L7M
ID FETCH-LOGICAL-c1623-ff76676b0141e3545912dba6869f4871b95f4a00ce8a4d562ee75aa023fdb1c03
IEDL.DBID DR2
ISSN 0044-8249
IngestDate Fri Jul 25 10:37:04 EDT 2025
Tue Jul 01 01:47:51 EDT 2025
Thu Apr 24 22:56:06 EDT 2025
Wed Aug 20 01:21:48 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c1623-ff76676b0141e3545912dba6869f4871b95f4a00ce8a4d562ee75aa023fdb1c03
Notes These authors contributed equally to this work.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-9015-0162
PQID 2185678739
PQPubID 866336
PageCount 5
ParticipantIDs proquest_journals_2185678739
crossref_citationtrail_10_1002_ange_201812523
crossref_primary_10_1002_ange_201812523
wiley_primary_10_1002_ange_201812523_ANGE201812523
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate March 4, 2019
PublicationDateYYYYMMDD 2019-03-04
PublicationDate_xml – month: 03
  year: 2019
  text: March 4, 2019
  day: 04
PublicationDecade 2010
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Angewandte Chemie
PublicationYear 2019
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2015; 6
2017; 2
2009 2009; 48 121
2017; 358
2017; 117
2017; 139
1978
2018; 6
2018; 9
2016; 6
2018; 8
2016; 1
2018; 359
2015; 137
2018 2018; 57 130
2017; 10
2017; 12
2016; 113
2013; 135
2018; 30
2014; 9
2018; 11
2014; 7
2018; 10
2016; 26
2016; 8
2018; 14
2016; 194
e_1_2_2_3_2
e_1_2_2_4_2
e_1_2_2_24_1
e_1_2_2_5_2
e_1_2_2_6_1
e_1_2_2_23_1
e_1_2_2_20_3
e_1_2_2_21_2
e_1_2_2_22_1
e_1_2_2_20_2
e_1_2_2_1_1
e_1_2_2_2_2
e_1_2_2_40_2
e_1_2_2_42_1
e_1_2_2_29_2
Kolb D. M. (e_1_2_2_41_1) 1978
e_1_2_2_43_1
e_1_2_2_7_2
e_1_2_2_8_2
e_1_2_2_9_1
e_1_2_2_28_2
e_1_2_2_43_2
e_1_2_2_44_1
e_1_2_2_26_2
e_1_2_2_27_1
e_1_2_2_25_2
e_1_2_2_36_2
e_1_2_2_12_2
e_1_2_2_13_1
e_1_2_2_37_2
e_1_2_2_10_3
e_1_2_2_11_2
e_1_2_2_38_2
e_1_2_2_10_2
e_1_2_2_39_2
e_1_2_2_19_2
e_1_2_2_30_2
e_1_2_2_31_1
e_1_2_2_17_3
e_1_2_2_32_1
e_1_2_2_17_2
e_1_2_2_18_1
e_1_2_2_16_2
e_1_2_2_33_2
e_1_2_2_15_2
e_1_2_2_34_2
e_1_2_2_35_1
e_1_2_2_14_2
References_xml – volume: 8
  start-page: 1800635
  year: 2018
  publication-title: Adv. Energy Mater.
– volume: 359
  start-page: 1513
  year: 2018
  end-page: 1516
  publication-title: Science
– volume: 135
  start-page: 4450
  year: 2013
  end-page: 4456
  publication-title: J. Am. Chem. Soc.
– volume: 9
  start-page: 1339
  year: 2018
  publication-title: Nat. Commun.
– volume: 6
  start-page: 181
  year: 2018
  end-page: 188
  publication-title: ChemElectroChem
– volume: 26
  start-page: 7094
  year: 2016
  end-page: 7102
  publication-title: Adv. Funct. Mater.
– volume: 30
  start-page: 1802156
  year: 2018
  publication-title: Adv. Mater.
– volume: 8
  start-page: 1703404
  year: 2018
  publication-title: Adv. Energy Mater.
– volume: 48 121
  start-page: 60 62
  year: 2009 2009
  end-page: 103 108
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 8
  start-page: 26801
  year: 2016
  end-page: 26808
  publication-title: ACS Appl. Mater. Interfaces
– volume: 358
  start-page: 506
  year: 2017
  end-page: 510
  publication-title: Science
– volume: 57 130
  start-page: 1505 1521
  year: 2018 2018
  end-page: 1509 1525
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 117
  start-page: 10403
  year: 2017
  end-page: 10473
  publication-title: Chem. Rev.
– volume: 10
  start-page: 4003
  year: 2017
  end-page: 4026
  publication-title: Nano Res.
– volume: 57 130
  start-page: 13206 13390
  year: 2018 2018
  end-page: 13210 13394
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 57 130
  start-page: 9795 9943
  year: 2018 2018
  end-page: 9798 9946
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 1
  start-page: 16128
  year: 2016
  publication-title: Nat. Energy
– volume: 7
  start-page: 513
  year: 2014
  publication-title: Energy Environ. Sci.
– volume: 6
  start-page: 8058
  year: 2015
  publication-title: Nat. Commun.
– volume: 1
  start-page: 16114
  year: 2016
  publication-title: Nat. Energy
– volume: 14
  start-page: 345
  year: 2018
  end-page: 350
  publication-title: Energy Storage Mater.
– volume: 30
  start-page: 1705830
  year: 2018
  publication-title: Adv. Mater.
– volume: 113
  start-page: 2862
  year: 2016
  end-page: 2867
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 137
  start-page: 15209
  year: 2015
  end-page: 15216
  publication-title: J. Am. Chem. Soc.
– start-page: 125
  year: 1978
– volume: 11
  start-page: 527
  year: 2018
  end-page: 543
  publication-title: Energy Environ. Sci.
– volume: 194
  start-page: 330
  year: 2016
  end-page: 337
  publication-title: Electrochim. Acta
– volume: 2
  start-page: 258
  year: 2017
  end-page: 270
  publication-title: Chem
– volume: 9
  start-page: 618
  year: 2014
  end-page: 623
  publication-title: Nat. Nanotechnol.
– volume: 10
  start-page: 27764
  year: 2018
  end-page: 27770
  publication-title: ACS Appl. Mater. Interfaces
– volume: 6
  start-page: 1502151
  year: 2016
  publication-title: Adv. Energy Mater.
– volume: 1
  start-page: 16010
  year: 2016
  publication-title: Nat. Energy
– volume: 12
  start-page: 194
  year: 2017
  end-page: 206
  publication-title: Nat. Nanotechnol.
– volume: 139
  start-page: 5916
  year: 2017
  end-page: 5922
  publication-title: J. Am. Chem. Soc.
– ident: e_1_2_2_5_2
  doi: 10.1038/nenergy.2016.128
– ident: e_1_2_2_17_3
  doi: 10.1002/ange.201808154
– ident: e_1_2_2_23_1
  doi: 10.1021/ja312241y
– ident: e_1_2_2_1_1
– ident: e_1_2_2_44_1
  doi: 10.1149/MA2018-02/5/309
– ident: e_1_2_2_32_1
– ident: e_1_2_2_14_2
  doi: 10.1038/s41467-018-03466-8
– ident: e_1_2_2_21_2
  doi: 10.1021/acsami.6b08775
– ident: e_1_2_2_4_2
  doi: 10.1039/C3EE40795K
– ident: e_1_2_2_27_1
– ident: e_1_2_2_30_2
  doi: 10.1021/jacs.7b01763
– ident: e_1_2_2_35_1
– ident: e_1_2_2_26_2
  doi: 10.1016/j.electacta.2016.02.102
– ident: e_1_2_2_43_2
  doi: 10.1002/ange.200802248
– ident: e_1_2_2_31_1
  doi: 10.1002/adma.201802156
– ident: e_1_2_2_8_2
  doi: 10.1039/C7EE02555F
– ident: e_1_2_2_10_3
  doi: 10.1002/ange.201805456
– ident: e_1_2_2_40_2
  doi: 10.1002/adma.201705830
– ident: e_1_2_2_39_2
  doi: 10.1021/acsami.8b07362
– ident: e_1_2_2_28_2
  doi: 10.1038/ncomms9058
– ident: e_1_2_2_7_2
  doi: 10.1021/acs.chemrev.7b00115
– ident: e_1_2_2_20_2
  doi: 10.1002/anie.201710806
– ident: e_1_2_2_11_2
  doi: 10.1126/science.aap8787
– ident: e_1_2_2_12_2
  doi: 10.1021/jacs.5b09385
– ident: e_1_2_2_38_2
  doi: 10.1038/nenergy.2016.10
– ident: e_1_2_2_19_2
  doi: 10.1038/nnano.2014.152
– ident: e_1_2_2_22_1
  doi: 10.1002/aenm.201502151
– ident: e_1_2_2_25_2
  doi: 10.1002/adfm.201602353
– ident: e_1_2_2_18_1
– ident: e_1_2_2_3_2
  doi: 10.1038/nenergy.2016.114
– ident: e_1_2_2_42_1
  doi: 10.1126/science.aam6014
– ident: e_1_2_2_16_2
  doi: 10.1016/j.chempr.2017.01.003
– ident: e_1_2_2_17_2
  doi: 10.1002/anie.201808154
– ident: e_1_2_2_34_2
  doi: 10.1007/s12274-017-1596-1
– start-page: 125
  volume-title: Advances in Electrochemistry and Electrochemical Engineering, Vol. 11
  year: 1978
  ident: e_1_2_2_41_1
– ident: e_1_2_2_29_2
  doi: 10.1002/aenm.201800635
– ident: e_1_2_2_15_2
  doi: 10.1002/celc.201800907
– ident: e_1_2_2_43_1
  doi: 10.1002/anie.200802248
– ident: e_1_2_2_13_1
– ident: e_1_2_2_10_2
  doi: 10.1002/anie.201805456
– ident: e_1_2_2_6_1
– ident: e_1_2_2_24_1
– ident: e_1_2_2_33_2
  doi: 10.1016/j.ensm.2018.05.021
– ident: e_1_2_2_37_2
  doi: 10.1073/pnas.1518188113
– ident: e_1_2_2_2_2
  doi: 10.1038/nnano.2017.16
– ident: e_1_2_2_20_3
  doi: 10.1002/ange.201710806
– ident: e_1_2_2_9_1
– ident: e_1_2_2_36_2
  doi: 10.1002/aenm.201703404
SSID ssj0006279
Score 2.0601115
Snippet Lithium metal anodes suffer from poor cycling stability and potential safety hazards. To alleviate these problems, Li thin‐film anodes prepared on current...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 3124
SubjectTerms Anodes
Cavities
Chemistry
Copper
Cu-Präferenz
Electrochemistry
Electrolytes
Festkörper-Elektrolyt-Interphase
Hazards
Holes
Lattice matching
Lithiophilie
Lithium
Lithium-Unterpotentialabscheidung
Lithiumanoden
Nucleation
Surface matching
Thin films
Title Lithiophilic Faceted Cu(100) Surfaces: High Utilization of Host Surface and Cavities for Lithium Metal Anodes
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fange.201812523
https://www.proquest.com/docview/2185678739
Volume 131
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEA7Si158i_VFDoJ6iN1HdrfrTYq1iO1BLXhbkmyCxXa3tLse_PXO7KNVQQS9bSAzzOY1X8KXL4ScQo4G2BFoZiA54WmVYaHUPovdwJaBa4QT4EXh_sDvDfnds_f86RZ_qQ-xOHDDmVGs1zjBhZy3lqKhyL1HahZkKNhMwSKMhC1ERQ9L_SjfKcX2LM5ZG6KqVRstp_XV_GtWWkLNz4C1yDjdDSLqWEuiyetlnslL9f5NxvE_P7NJ1is4Sq_L8bNFVnSyTVY79StwO2RyP8peRukUz10U7QoFIDumnfwcXF7Qx3xmkNN1RZEvQofZaFzd66Spob10ntVVqEjATLwVAq4UkDItHOcT2tcZRpCksZ7vkmH35qnTY9UTDUzZAJyYMQGSZCXSRbULaCy0nVgKv-2HBrZCtgw9w4VlKd0WPAaspXXgCQFAwcTSVpa7RxpJmuh9QrlUuDrECBG5FEJ64M92lBNDlNxWTcLqLopUpV-Oz2iMo1J52YmwEaNFIzbJ2aL-tFTu-LHmUd3jUTWD5xFAHw8SeeCGTeIUXfeLl-h6cHuzKB38xeiQrMF3WFDc-BFpZLNcHwPmyeRJMa4_AC3S9mw
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB6V9FAu9AGogZTuoRJwcOrH2o57i6KEFJIcIJG4WbvrXTVqa0eJzaG_vjN-JBQJIdGjrd3ReB-eb0fffgNwgTEaYUeoLYPBibJVxoqkDqzECx0Zeka4IV0Uns6C8YJ__ek3bEK6C1PpQ2wTbrQzyv81bXBKSF_uVEOJfE_cLAxReJp6AftU1rs8VX3fKUgFbiW3Z3Nu9dCvRrfRdi-f9n8al3Zg83fIWsac0SHIxtuKanLbLXLZVQ9_CDk-63OO4FWNSFm_WkLHsKfTEzgYNIXgXsP9ZJnfLLMVpV4UGwmFODthg-ITmvzMfhRrQ7SuK0aUEbbIl3f11U6WGTbONnnThIkUu4lfpYYrQ7DMSsPFPZvqnDxIs0Rv3sBiNJwPxlZdpcFSDmIny5iQeLKSGKPaQ0AWOW4iRdALIoOnIUdGvuHCtpXuCZ4g3NI69IVArGAS6SjbewutNEv1KTAuFf0gEkKJXAohfbTnuMpN0EvuqDZYzRzFqpYwp0oad3ElvuzGNIjxdhDb8HHbflWJd_y1ZaeZ8rjexJsY0Y-PsTz0oja45dz9w0rcn30Zbp_e_U-nczgYz6eTeHI9-_YeXuL7qGS88Q608nWhzxAC5fJDucgfAaND-oc
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9tAEB4VKgGXUlpQ00K7h0otB4MfazvmFiWkKYUIFSJxs_apRoAdEbuH_vrO-JEAUlUJjl7tjMb7mm9X334L8BlzNMKO2DgWkxOdVlknkSZydBB7Mg6s8GO6KHw2jkYTfnIVXt27xV_rQywO3GhmVOs1TfCZtodL0VDi3hM1CzMUbqZW4CWP3C6N68HPpYBU5Ndqey7nThfDamUbXf_wof3DtLTEmvcRa5Vyhpsg2mBrpsn1QVnIA_XnkY7jc_7mNbxq8Cjr1QNoC16Y7A2s99tn4N7C7em0-DXNZ3TwothQKETZmvXLr-hyn12Ud5ZIXUeMCCNsUkxvmoudLLdslM-LtgoTGZqJ35WCK0OozCrH5S07MwVFkOXazLdhMjy-7I-c5o0GR3mInBxrY2LJSuKLmgDhWOL5WoqoGyUW90KeTELLhesq0xVcI9gyJg6FQKRgtfSUG-zAapZn5h0wLhUtD5owIpdCyBD9eb7yNUbJPdUBp-2iVDUC5vSOxk1aSy_7KTViumjEDnxZ1J_V0h3_rLnb9njaTOF5itgnxEweB0kH_Krr_uMl7Y2_HS--3j_F6BOsnQ-G6en38Y8PsIHFSUV347uwWtyVZg_xTyE_VkP8L8dI-T8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Lithiophilic+Faceted+Cu%28100%29+Surfaces%3A+High+Utilization+of+Host+Surface+and+Cavities+for+Lithium+Metal+Anodes&rft.jtitle=Angewandte+Chemie&rft.au=Gu%2C+Yu&rft.au=Xu%2C+Hong%E2%80%90Yu&rft.au=Zhang%2C+Xia%E2%80%90Guang&rft.au=Wang%2C+Wei%E2%80%90Wei&rft.date=2019-03-04&rft.issn=0044-8249&rft.eissn=1521-3757&rft.volume=131&rft.issue=10&rft.spage=3124&rft.epage=3128&rft_id=info:doi/10.1002%2Fange.201812523&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_ange_201812523
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0044-8249&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0044-8249&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0044-8249&client=summon