Lithiophilic Faceted Cu(100) Surfaces: High Utilization of Host Surface and Cavities for Lithium Metal Anodes
Lithium metal anodes suffer from poor cycling stability and potential safety hazards. To alleviate these problems, Li thin‐film anodes prepared on current collectors (CCs) and Li‐free types of anodes that involve direct Li plating on CCs have received increasing attention. In this study, the atomic‐...
Saved in:
Published in | Angewandte Chemie Vol. 131; no. 10; pp. 3124 - 3128 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
04.03.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Lithium metal anodes suffer from poor cycling stability and potential safety hazards. To alleviate these problems, Li thin‐film anodes prepared on current collectors (CCs) and Li‐free types of anodes that involve direct Li plating on CCs have received increasing attention. In this study, the atomic‐scale design of Cu‐CC surface lithiophilicity based on surface lattice matching of the bcc Li(110) and fcc Cu(100) faces as well as electrochemical achievement of Cu(100)‐preferred surfaces for smooth Li deposition with a low nucleation barrier is reported. Additionally, a purposely designed solid–electrolyte interphase is created for Li anodes prepared on CCs. Not only is a smooth planar Li thin film prepared, but a uniform Li plating/stripping on the skeleton of 3D CCs is achieved as well by high utilization of the surface and cavities of the 3D CCs. This work demonstrates surface electrochemistry approaches to construct stable Li metal–electrolyte interphases towards practical applications of Li anodes prepared on CCs.
Mit Lithium in Verbindung: Oberflächen‐Lithiophilie kann auf flachen und dreidimensionalen Cu‐Substraten für Li‐Anoden erzeugt werden. Die Gitterübereinstimmung von Cu(100) und Li(110) ermöglicht die Abscheidung dünner Li‐Filme und die Erzeugung ultraflacher ultradünner Elektrodengrenzschichten (SEI) auf Cu. Dabei können nicht nur direkte Oberflächen, sondern auch Hohlräume effizient genutzt werden. |
---|---|
AbstractList | Lithium metal anodes suffer from poor cycling stability and potential safety hazards. To alleviate these problems, Li thin‐film anodes prepared on current collectors (CCs) and Li‐free types of anodes that involve direct Li plating on CCs have received increasing attention. In this study, the atomic‐scale design of Cu‐CC surface lithiophilicity based on surface lattice matching of the bcc Li(110) and fcc Cu(100) faces as well as electrochemical achievement of Cu(100)‐preferred surfaces for smooth Li deposition with a low nucleation barrier is reported. Additionally, a purposely designed solid–electrolyte interphase is created for Li anodes prepared on CCs. Not only is a smooth planar Li thin film prepared, but a uniform Li plating/stripping on the skeleton of 3D CCs is achieved as well by high utilization of the surface and cavities of the 3D CCs. This work demonstrates surface electrochemistry approaches to construct stable Li metal–electrolyte interphases towards practical applications of Li anodes prepared on CCs.
Mit Lithium in Verbindung: Oberflächen‐Lithiophilie kann auf flachen und dreidimensionalen Cu‐Substraten für Li‐Anoden erzeugt werden. Die Gitterübereinstimmung von Cu(100) und Li(110) ermöglicht die Abscheidung dünner Li‐Filme und die Erzeugung ultraflacher ultradünner Elektrodengrenzschichten (SEI) auf Cu. Dabei können nicht nur direkte Oberflächen, sondern auch Hohlräume effizient genutzt werden. Lithium metal anodes suffer from poor cycling stability and potential safety hazards. To alleviate these problems, Li thin‐film anodes prepared on current collectors (CCs) and Li‐free types of anodes that involve direct Li plating on CCs have received increasing attention. In this study, the atomic‐scale design of Cu‐CC surface lithiophilicity based on surface lattice matching of the bcc Li(110) and fcc Cu(100) faces as well as electrochemical achievement of Cu(100)‐preferred surfaces for smooth Li deposition with a low nucleation barrier is reported. Additionally, a purposely designed solid–electrolyte interphase is created for Li anodes prepared on CCs. Not only is a smooth planar Li thin film prepared, but a uniform Li plating/stripping on the skeleton of 3D CCs is achieved as well by high utilization of the surface and cavities of the 3D CCs. This work demonstrates surface electrochemistry approaches to construct stable Li metal–electrolyte interphases towards practical applications of Li anodes prepared on CCs. |
Author | Tang, Shuai Gu, Yu Yan, Jia‐Wei Wu, De‐Yin Dong, Quan‐Feng Zheng, Ming‐Sen He, Jun‐Wu Zhang, Xia‐Guang Mao, Bing‐Wei Wang, Wei‐Wei Xu, Hong‐Yu |
Author_xml | – sequence: 1 givenname: Yu surname: Gu fullname: Gu, Yu organization: Xiamen University – sequence: 2 givenname: Hong‐Yu surname: Xu fullname: Xu, Hong‐Yu organization: Xiamen University – sequence: 3 givenname: Xia‐Guang surname: Zhang fullname: Zhang, Xia‐Guang organization: Xiamen University – sequence: 4 givenname: Wei‐Wei surname: Wang fullname: Wang, Wei‐Wei organization: Xiamen University – sequence: 5 givenname: Jun‐Wu surname: He fullname: He, Jun‐Wu organization: Xiamen University – sequence: 6 givenname: Shuai surname: Tang fullname: Tang, Shuai organization: Xiamen University – sequence: 7 givenname: Jia‐Wei surname: Yan fullname: Yan, Jia‐Wei organization: Xiamen University – sequence: 8 givenname: De‐Yin surname: Wu fullname: Wu, De‐Yin email: dywu@xmu.edu.cn organization: Xiamen University – sequence: 9 givenname: Ming‐Sen surname: Zheng fullname: Zheng, Ming‐Sen organization: Xiamen University – sequence: 10 givenname: Quan‐Feng surname: Dong fullname: Dong, Quan‐Feng organization: Xiamen University – sequence: 11 givenname: Bing‐Wei orcidid: 0000-0002-9015-0162 surname: Mao fullname: Mao, Bing‐Wei email: bwmao@xmu.edu.cn organization: Xiamen University |
BookMark | eNqFkEtLAzEURoMo2Fa3rgNudDE1yeQx466UPoSqC-16yMwkbcp0UpOMUn-909YHCOLqwuWc73K_Ljiuba0AuMCojxEiN7JeqD5BOMGEkfgIdDAjOIoFE8eggxClUUJoegq63q8QQpyItAPWMxOWxm6WpjIFHMtCBVXCYXPVRl7Dp8bpduVv4dQslnAeWupdBmNraDWcWh--ECjrVpOvJhjlobYO7oObNbxXQVZwUNtS-TNwomXl1fnn7IH5ePQ8nEazx8ndcDCLCsxJHGktOBc8R5hiFTPKUkzKXPKEp5omAucp01QiVKhE0pJxopRgUiIS6zLHBYp74PKQu3H2pVE-ZCvbuLo9mRGcMC4SEactRQ9U4az3TumsMGH_XXDSVBlG2a7YbFds9l1sq_V_aRtn1tJt_xbSg_BmKrX9h84GD5PRj_sBgzaMWQ |
CitedBy_id | crossref_primary_10_1002_anie_201912217 crossref_primary_10_1002_advs_202002144 crossref_primary_10_1007_s41918_022_00158_2 crossref_primary_10_1016_j_xcrp_2022_101164 crossref_primary_10_1002_ejoc_202000074 crossref_primary_10_1002_ange_201912217 crossref_primary_10_1002_anie_202000162 crossref_primary_10_1002_ange_202000162 |
Cites_doi | 10.1038/nenergy.2016.128 10.1002/ange.201808154 10.1021/ja312241y 10.1149/MA2018-02/5/309 10.1038/s41467-018-03466-8 10.1021/acsami.6b08775 10.1039/C3EE40795K 10.1021/jacs.7b01763 10.1016/j.electacta.2016.02.102 10.1002/ange.200802248 10.1002/adma.201802156 10.1039/C7EE02555F 10.1002/ange.201805456 10.1002/adma.201705830 10.1021/acsami.8b07362 10.1038/ncomms9058 10.1021/acs.chemrev.7b00115 10.1002/anie.201710806 10.1126/science.aap8787 10.1021/jacs.5b09385 10.1038/nenergy.2016.10 10.1038/nnano.2014.152 10.1002/aenm.201502151 10.1002/adfm.201602353 10.1038/nenergy.2016.114 10.1126/science.aam6014 10.1016/j.chempr.2017.01.003 10.1002/anie.201808154 10.1007/s12274-017-1596-1 10.1002/aenm.201800635 10.1002/celc.201800907 10.1002/anie.200802248 10.1002/anie.201805456 10.1016/j.ensm.2018.05.021 10.1073/pnas.1518188113 10.1038/nnano.2017.16 10.1002/ange.201710806 10.1002/aenm.201703404 |
ContentType | Journal Article |
Copyright | 2019 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: 2019 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | AAYXX CITATION 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1002/ange.201812523 |
DatabaseName | CrossRef Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | Materials Research Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3757 |
EndPage | 3128 |
ExternalDocumentID | 10_1002_ange_201812523 ANGE201812523 |
Genre | shortCommunication |
GrantInformation_xml | – fundername: Ministry of Science and Technology of the People's Republic of China funderid: 2015CB251102; 2015CB932303; 2012CB932902 – fundername: National Natural Science Foundation of China funderid: 21533006; 21621091; U1805254 |
GroupedDBID | -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHQN AAMMB AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABEML ABIJN ABJNI ABLJU ABPVW ACAHQ ACCUC ACCZN ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACUHS ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEFGJ AEIGN AEIMD AEUYR AEYWJ AFBPY AFFPM AFGKR AFRAH AFWVQ AGHNM AGXDD AGYGG AHBTC AIDQK AIDYY AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS EJD F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG P2W P2X P4D Q.N Q11 QB0 QRW R.K ROL RX1 RYL SUPJJ TN5 TUS UB1 UPT V2E W8V W99 WBFHL WBKPD WIH WIK WJL WOHZO WQJ WXSBR WYISQ XG1 XV2 Y6R ZZTAW ~IA ~WT AAHHS AAYXX ACCFJ ADZOD AEEZP AEQDE AIWBW AJBDE CITATION 7SR 7U5 8BQ 8FD JG9 L7M |
ID | FETCH-LOGICAL-c1623-ff76676b0141e3545912dba6869f4871b95f4a00ce8a4d562ee75aa023fdb1c03 |
IEDL.DBID | DR2 |
ISSN | 0044-8249 |
IngestDate | Fri Jul 25 10:37:04 EDT 2025 Tue Jul 01 01:47:51 EDT 2025 Thu Apr 24 22:56:06 EDT 2025 Wed Aug 20 01:21:48 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c1623-ff76676b0141e3545912dba6869f4871b95f4a00ce8a4d562ee75aa023fdb1c03 |
Notes | These authors contributed equally to this work. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-9015-0162 |
PQID | 2185678739 |
PQPubID | 866336 |
PageCount | 5 |
ParticipantIDs | proquest_journals_2185678739 crossref_citationtrail_10_1002_ange_201812523 crossref_primary_10_1002_ange_201812523 wiley_primary_10_1002_ange_201812523_ANGE201812523 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | March 4, 2019 |
PublicationDateYYYYMMDD | 2019-03-04 |
PublicationDate_xml | – month: 03 year: 2019 text: March 4, 2019 day: 04 |
PublicationDecade | 2010 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Angewandte Chemie |
PublicationYear | 2019 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2015; 6 2017; 2 2009 2009; 48 121 2017; 358 2017; 117 2017; 139 1978 2018; 6 2018; 9 2016; 6 2018; 8 2016; 1 2018; 359 2015; 137 2018 2018; 57 130 2017; 10 2017; 12 2016; 113 2013; 135 2018; 30 2014; 9 2018; 11 2014; 7 2018; 10 2016; 26 2016; 8 2018; 14 2016; 194 e_1_2_2_3_2 e_1_2_2_4_2 e_1_2_2_24_1 e_1_2_2_5_2 e_1_2_2_6_1 e_1_2_2_23_1 e_1_2_2_20_3 e_1_2_2_21_2 e_1_2_2_22_1 e_1_2_2_20_2 e_1_2_2_1_1 e_1_2_2_2_2 e_1_2_2_40_2 e_1_2_2_42_1 e_1_2_2_29_2 Kolb D. M. (e_1_2_2_41_1) 1978 e_1_2_2_43_1 e_1_2_2_7_2 e_1_2_2_8_2 e_1_2_2_9_1 e_1_2_2_28_2 e_1_2_2_43_2 e_1_2_2_44_1 e_1_2_2_26_2 e_1_2_2_27_1 e_1_2_2_25_2 e_1_2_2_36_2 e_1_2_2_12_2 e_1_2_2_13_1 e_1_2_2_37_2 e_1_2_2_10_3 e_1_2_2_11_2 e_1_2_2_38_2 e_1_2_2_10_2 e_1_2_2_39_2 e_1_2_2_19_2 e_1_2_2_30_2 e_1_2_2_31_1 e_1_2_2_17_3 e_1_2_2_32_1 e_1_2_2_17_2 e_1_2_2_18_1 e_1_2_2_16_2 e_1_2_2_33_2 e_1_2_2_15_2 e_1_2_2_34_2 e_1_2_2_35_1 e_1_2_2_14_2 |
References_xml | – volume: 8 start-page: 1800635 year: 2018 publication-title: Adv. Energy Mater. – volume: 359 start-page: 1513 year: 2018 end-page: 1516 publication-title: Science – volume: 135 start-page: 4450 year: 2013 end-page: 4456 publication-title: J. Am. Chem. Soc. – volume: 9 start-page: 1339 year: 2018 publication-title: Nat. Commun. – volume: 6 start-page: 181 year: 2018 end-page: 188 publication-title: ChemElectroChem – volume: 26 start-page: 7094 year: 2016 end-page: 7102 publication-title: Adv. Funct. Mater. – volume: 30 start-page: 1802156 year: 2018 publication-title: Adv. Mater. – volume: 8 start-page: 1703404 year: 2018 publication-title: Adv. Energy Mater. – volume: 48 121 start-page: 60 62 year: 2009 2009 end-page: 103 108 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 8 start-page: 26801 year: 2016 end-page: 26808 publication-title: ACS Appl. Mater. Interfaces – volume: 358 start-page: 506 year: 2017 end-page: 510 publication-title: Science – volume: 57 130 start-page: 1505 1521 year: 2018 2018 end-page: 1509 1525 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 117 start-page: 10403 year: 2017 end-page: 10473 publication-title: Chem. Rev. – volume: 10 start-page: 4003 year: 2017 end-page: 4026 publication-title: Nano Res. – volume: 57 130 start-page: 13206 13390 year: 2018 2018 end-page: 13210 13394 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 57 130 start-page: 9795 9943 year: 2018 2018 end-page: 9798 9946 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 1 start-page: 16128 year: 2016 publication-title: Nat. Energy – volume: 7 start-page: 513 year: 2014 publication-title: Energy Environ. Sci. – volume: 6 start-page: 8058 year: 2015 publication-title: Nat. Commun. – volume: 1 start-page: 16114 year: 2016 publication-title: Nat. Energy – volume: 14 start-page: 345 year: 2018 end-page: 350 publication-title: Energy Storage Mater. – volume: 30 start-page: 1705830 year: 2018 publication-title: Adv. Mater. – volume: 113 start-page: 2862 year: 2016 end-page: 2867 publication-title: Proc. Natl. Acad. Sci. USA – volume: 137 start-page: 15209 year: 2015 end-page: 15216 publication-title: J. Am. Chem. Soc. – start-page: 125 year: 1978 – volume: 11 start-page: 527 year: 2018 end-page: 543 publication-title: Energy Environ. Sci. – volume: 194 start-page: 330 year: 2016 end-page: 337 publication-title: Electrochim. Acta – volume: 2 start-page: 258 year: 2017 end-page: 270 publication-title: Chem – volume: 9 start-page: 618 year: 2014 end-page: 623 publication-title: Nat. Nanotechnol. – volume: 10 start-page: 27764 year: 2018 end-page: 27770 publication-title: ACS Appl. Mater. Interfaces – volume: 6 start-page: 1502151 year: 2016 publication-title: Adv. Energy Mater. – volume: 1 start-page: 16010 year: 2016 publication-title: Nat. Energy – volume: 12 start-page: 194 year: 2017 end-page: 206 publication-title: Nat. Nanotechnol. – volume: 139 start-page: 5916 year: 2017 end-page: 5922 publication-title: J. Am. Chem. Soc. – ident: e_1_2_2_5_2 doi: 10.1038/nenergy.2016.128 – ident: e_1_2_2_17_3 doi: 10.1002/ange.201808154 – ident: e_1_2_2_23_1 doi: 10.1021/ja312241y – ident: e_1_2_2_1_1 – ident: e_1_2_2_44_1 doi: 10.1149/MA2018-02/5/309 – ident: e_1_2_2_32_1 – ident: e_1_2_2_14_2 doi: 10.1038/s41467-018-03466-8 – ident: e_1_2_2_21_2 doi: 10.1021/acsami.6b08775 – ident: e_1_2_2_4_2 doi: 10.1039/C3EE40795K – ident: e_1_2_2_27_1 – ident: e_1_2_2_30_2 doi: 10.1021/jacs.7b01763 – ident: e_1_2_2_35_1 – ident: e_1_2_2_26_2 doi: 10.1016/j.electacta.2016.02.102 – ident: e_1_2_2_43_2 doi: 10.1002/ange.200802248 – ident: e_1_2_2_31_1 doi: 10.1002/adma.201802156 – ident: e_1_2_2_8_2 doi: 10.1039/C7EE02555F – ident: e_1_2_2_10_3 doi: 10.1002/ange.201805456 – ident: e_1_2_2_40_2 doi: 10.1002/adma.201705830 – ident: e_1_2_2_39_2 doi: 10.1021/acsami.8b07362 – ident: e_1_2_2_28_2 doi: 10.1038/ncomms9058 – ident: e_1_2_2_7_2 doi: 10.1021/acs.chemrev.7b00115 – ident: e_1_2_2_20_2 doi: 10.1002/anie.201710806 – ident: e_1_2_2_11_2 doi: 10.1126/science.aap8787 – ident: e_1_2_2_12_2 doi: 10.1021/jacs.5b09385 – ident: e_1_2_2_38_2 doi: 10.1038/nenergy.2016.10 – ident: e_1_2_2_19_2 doi: 10.1038/nnano.2014.152 – ident: e_1_2_2_22_1 doi: 10.1002/aenm.201502151 – ident: e_1_2_2_25_2 doi: 10.1002/adfm.201602353 – ident: e_1_2_2_18_1 – ident: e_1_2_2_3_2 doi: 10.1038/nenergy.2016.114 – ident: e_1_2_2_42_1 doi: 10.1126/science.aam6014 – ident: e_1_2_2_16_2 doi: 10.1016/j.chempr.2017.01.003 – ident: e_1_2_2_17_2 doi: 10.1002/anie.201808154 – ident: e_1_2_2_34_2 doi: 10.1007/s12274-017-1596-1 – start-page: 125 volume-title: Advances in Electrochemistry and Electrochemical Engineering, Vol. 11 year: 1978 ident: e_1_2_2_41_1 – ident: e_1_2_2_29_2 doi: 10.1002/aenm.201800635 – ident: e_1_2_2_15_2 doi: 10.1002/celc.201800907 – ident: e_1_2_2_43_1 doi: 10.1002/anie.200802248 – ident: e_1_2_2_13_1 – ident: e_1_2_2_10_2 doi: 10.1002/anie.201805456 – ident: e_1_2_2_6_1 – ident: e_1_2_2_24_1 – ident: e_1_2_2_33_2 doi: 10.1016/j.ensm.2018.05.021 – ident: e_1_2_2_37_2 doi: 10.1073/pnas.1518188113 – ident: e_1_2_2_2_2 doi: 10.1038/nnano.2017.16 – ident: e_1_2_2_20_3 doi: 10.1002/ange.201710806 – ident: e_1_2_2_9_1 – ident: e_1_2_2_36_2 doi: 10.1002/aenm.201703404 |
SSID | ssj0006279 |
Score | 2.0601115 |
Snippet | Lithium metal anodes suffer from poor cycling stability and potential safety hazards. To alleviate these problems, Li thin‐film anodes prepared on current... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 3124 |
SubjectTerms | Anodes Cavities Chemistry Copper Cu-Präferenz Electrochemistry Electrolytes Festkörper-Elektrolyt-Interphase Hazards Holes Lattice matching Lithiophilie Lithium Lithium-Unterpotentialabscheidung Lithiumanoden Nucleation Surface matching Thin films |
Title | Lithiophilic Faceted Cu(100) Surfaces: High Utilization of Host Surface and Cavities for Lithium Metal Anodes |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fange.201812523 https://www.proquest.com/docview/2185678739 |
Volume | 131 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEA7Si158i_VFDoJ6iN1HdrfrTYq1iO1BLXhbkmyCxXa3tLse_PXO7KNVQQS9bSAzzOY1X8KXL4ScQo4G2BFoZiA54WmVYaHUPovdwJaBa4QT4EXh_sDvDfnds_f86RZ_qQ-xOHDDmVGs1zjBhZy3lqKhyL1HahZkKNhMwSKMhC1ERQ9L_SjfKcX2LM5ZG6KqVRstp_XV_GtWWkLNz4C1yDjdDSLqWEuiyetlnslL9f5NxvE_P7NJ1is4Sq_L8bNFVnSyTVY79StwO2RyP8peRukUz10U7QoFIDumnfwcXF7Qx3xmkNN1RZEvQofZaFzd66Spob10ntVVqEjATLwVAq4UkDItHOcT2tcZRpCksZ7vkmH35qnTY9UTDUzZAJyYMQGSZCXSRbULaCy0nVgKv-2HBrZCtgw9w4VlKd0WPAaspXXgCQFAwcTSVpa7RxpJmuh9QrlUuDrECBG5FEJ64M92lBNDlNxWTcLqLopUpV-Oz2iMo1J52YmwEaNFIzbJ2aL-tFTu-LHmUd3jUTWD5xFAHw8SeeCGTeIUXfeLl-h6cHuzKB38xeiQrMF3WFDc-BFpZLNcHwPmyeRJMa4_AC3S9mw |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB6V9FAu9AGogZTuoRJwcOrH2o57i6KEFJIcIJG4WbvrXTVqa0eJzaG_vjN-JBQJIdGjrd3ReB-eb0fffgNwgTEaYUeoLYPBibJVxoqkDqzECx0Zeka4IV0Uns6C8YJ__ek3bEK6C1PpQ2wTbrQzyv81bXBKSF_uVEOJfE_cLAxReJp6AftU1rs8VX3fKUgFbiW3Z3Nu9dCvRrfRdi-f9n8al3Zg83fIWsac0SHIxtuKanLbLXLZVQ9_CDk-63OO4FWNSFm_WkLHsKfTEzgYNIXgXsP9ZJnfLLMVpV4UGwmFODthg-ITmvzMfhRrQ7SuK0aUEbbIl3f11U6WGTbONnnThIkUu4lfpYYrQ7DMSsPFPZvqnDxIs0Rv3sBiNJwPxlZdpcFSDmIny5iQeLKSGKPaQ0AWOW4iRdALIoOnIUdGvuHCtpXuCZ4g3NI69IVArGAS6SjbewutNEv1KTAuFf0gEkKJXAohfbTnuMpN0EvuqDZYzRzFqpYwp0oad3ElvuzGNIjxdhDb8HHbflWJd_y1ZaeZ8rjexJsY0Y-PsTz0oja45dz9w0rcn30Zbp_e_U-nczgYz6eTeHI9-_YeXuL7qGS88Q608nWhzxAC5fJDucgfAaND-oc |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9tAEB4VKgGXUlpQ00K7h0otB4MfazvmFiWkKYUIFSJxs_apRoAdEbuH_vrO-JEAUlUJjl7tjMb7mm9X334L8BlzNMKO2DgWkxOdVlknkSZydBB7Mg6s8GO6KHw2jkYTfnIVXt27xV_rQywO3GhmVOs1TfCZtodL0VDi3hM1CzMUbqZW4CWP3C6N68HPpYBU5Ndqey7nThfDamUbXf_wof3DtLTEmvcRa5Vyhpsg2mBrpsn1QVnIA_XnkY7jc_7mNbxq8Cjr1QNoC16Y7A2s99tn4N7C7em0-DXNZ3TwothQKETZmvXLr-hyn12Ud5ZIXUeMCCNsUkxvmoudLLdslM-LtgoTGZqJ35WCK0OozCrH5S07MwVFkOXazLdhMjy-7I-c5o0GR3mInBxrY2LJSuKLmgDhWOL5WoqoGyUW90KeTELLhesq0xVcI9gyJg6FQKRgtfSUG-zAapZn5h0wLhUtD5owIpdCyBD9eb7yNUbJPdUBp-2iVDUC5vSOxk1aSy_7KTViumjEDnxZ1J_V0h3_rLnb9njaTOF5itgnxEweB0kH_Krr_uMl7Y2_HS--3j_F6BOsnQ-G6en38Y8PsIHFSUV347uwWtyVZg_xTyE_VkP8L8dI-T8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Lithiophilic+Faceted+Cu%28100%29+Surfaces%3A+High+Utilization+of+Host+Surface+and+Cavities+for+Lithium+Metal+Anodes&rft.jtitle=Angewandte+Chemie&rft.au=Gu%2C+Yu&rft.au=Xu%2C+Hong%E2%80%90Yu&rft.au=Zhang%2C+Xia%E2%80%90Guang&rft.au=Wang%2C+Wei%E2%80%90Wei&rft.date=2019-03-04&rft.issn=0044-8249&rft.eissn=1521-3757&rft.volume=131&rft.issue=10&rft.spage=3124&rft.epage=3128&rft_id=info:doi/10.1002%2Fange.201812523&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_ange_201812523 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0044-8249&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0044-8249&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0044-8249&client=summon |