Lithiophilic Faceted Cu(100) Surfaces: High Utilization of Host Surface and Cavities for Lithium Metal Anodes

Lithium metal anodes suffer from poor cycling stability and potential safety hazards. To alleviate these problems, Li thin‐film anodes prepared on current collectors (CCs) and Li‐free types of anodes that involve direct Li plating on CCs have received increasing attention. In this study, the atomic‐...

Full description

Saved in:
Bibliographic Details
Published inAngewandte Chemie Vol. 131; no. 10; pp. 3124 - 3128
Main Authors Gu, Yu, Xu, Hong‐Yu, Zhang, Xia‐Guang, Wang, Wei‐Wei, He, Jun‐Wu, Tang, Shuai, Yan, Jia‐Wei, Wu, De‐Yin, Zheng, Ming‐Sen, Dong, Quan‐Feng, Mao, Bing‐Wei
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 04.03.2019
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Lithium metal anodes suffer from poor cycling stability and potential safety hazards. To alleviate these problems, Li thin‐film anodes prepared on current collectors (CCs) and Li‐free types of anodes that involve direct Li plating on CCs have received increasing attention. In this study, the atomic‐scale design of Cu‐CC surface lithiophilicity based on surface lattice matching of the bcc Li(110) and fcc Cu(100) faces as well as electrochemical achievement of Cu(100)‐preferred surfaces for smooth Li deposition with a low nucleation barrier is reported. Additionally, a purposely designed solid–electrolyte interphase is created for Li anodes prepared on CCs. Not only is a smooth planar Li thin film prepared, but a uniform Li plating/stripping on the skeleton of 3D CCs is achieved as well by high utilization of the surface and cavities of the 3D CCs. This work demonstrates surface electrochemistry approaches to construct stable Li metal–electrolyte interphases towards practical applications of Li anodes prepared on CCs. Mit Lithium in Verbindung: Oberflächen‐Lithiophilie kann auf flachen und dreidimensionalen Cu‐Substraten für Li‐Anoden erzeugt werden. Die Gitterübereinstimmung von Cu(100) und Li(110) ermöglicht die Abscheidung dünner Li‐Filme und die Erzeugung ultraflacher ultradünner Elektrodengrenzschichten (SEI) auf Cu. Dabei können nicht nur direkte Oberflächen, sondern auch Hohlräume effizient genutzt werden.
Bibliography:These authors contributed equally to this work.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0044-8249
1521-3757
DOI:10.1002/ange.201812523