Size-resolved gas-particle partitioning of polycyclic aromatic hydrocarbons in a large temperature range of 50
Size-resolved gas-particle partitioning of semi-volatile organic compounds (SVOCs) can affect their environmental behaviors and health effects, which has not been widely studied in comparing with the gas-total suspended particle partitioning. Herein, the size-resolved gas-particle partitioning quoti...
Saved in:
Published in | Journal of hazardous materials Vol. 479; p. 135607 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
05.11.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Size-resolved gas-particle partitioning of semi-volatile organic compounds (SVOCs) can affect their environmental behaviors and health effects, which has not been widely studied in comparing with the gas-total suspended particle partitioning. Herein, the size-resolved gas-particle partitioning quotient (KPi) of polycyclic aromatic hydrocarbons (PAHs) in a large temperature range (−20.6 ℃ ∼ 29.4 ℃) was firstly comprehensively studied. The log KPi values of PAHs related to fine particles were significantly higher than those related to coarse particles. When the logarithm of subcooled liquid-vapor pressure (log PL0) ∈ [−7, −1), the regression slopes of log KPi vs log PL0 related to the particle size > 1.0 µm were shallower than those with the particle size range of 0.10–1.0 µm, which indicated the influence of particle size on KPi. Among the three previous prediction equations of gas-particle partitioning quotient, the empirical equation based on the ambient temperature matched better with the measured log KPi. Therefore, a new prediction equation including ambient temperature and particle size as the two major parameters was established. For most particle size ranges, the new equation showed better prediction performance than the three previous equations. In summary, this study provided new insights for the size-resolved gas-particle partitioning mechanism and quotient.
[Display omitted]
•The size-resolved gas-particle partitioning of PAHs with a 50 ℃ temperature range was studied.•The gas-particle partitioning quotient of PAHs was also influenced by particle size.•A new prediction equation of size-resolved gas-particle partitioning quotient of PAHs was established.•The ambient temperature and particle size were included in the new prediction equation.•The new equation performed better for the predication of log KPi in large temperature range. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0304-3894 1873-3336 1873-3336 |
DOI: | 10.1016/j.jhazmat.2024.135607 |