Antioxidant Activity of Daemonorops draco Resin

Jernang resin is secretion of jernang rattan (Daemonorops draco, Arecaceae family) fruits which is endemic in Southeast Asia. This resin has various biological activities and empirically used as wound healing, headache medicines, and fever remedies by Anak Dalam ethnic group from Jambi. This study w...

Full description

Saved in:
Bibliographic Details
Published inJurnal Kimia Sains dan Aplikasi Vol. 22; no. 5; pp. 179 - 183
Main Authors Purwanti, Sri, Wahyuni, Wulan Tri, Batubara, Irmanida
Format Journal Article
LanguageEnglish
Published Chemistry Department, Faculty of Sciences and Mathematics, Diponegoro University 30.09.2019
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Jernang resin is secretion of jernang rattan (Daemonorops draco, Arecaceae family) fruits which is endemic in Southeast Asia. This resin has various biological activities and empirically used as wound healing, headache medicines, and fever remedies by Anak Dalam ethnic group from Jambi. This study was performed to evaluate the antioxidant activity of nonpolar fraction of D. draco resin which collected from Jambi Province, Sumatera, Indonesia. Resin was extracted with n-hexane, ethyl acetate, and methanol respectively. The antioxidant properties of the extracts were then evaluated using 1,1-diphenyl-2picryl-hidrazyl radical scavenging assay. The most active extract was further fractionated using n-hexane and methanol and separated using column chromatography and preparative thin layer chromatography. Separation of the extract was conducted through antioxidant assay-guided fractionation. Characterization of the active fraction was carried out by infrared spectroscopy. The result shows that ethyl acetate extract provides higher antioxidant activity (IC50 = 27.61 µg/mL) compare to methanol and n-hexane extracts. N-hexane fraction of ethyl acetate extract used for further separation using column and preparative thin layer chromatography due to its antioxidant activity. Separation using column chromatography resulting in 9 fractions (F.1-9). Fraction F.5 provide high antioxidant activity (IC50 = 17.27 µg/mL) and further separated using preparative thin layer chromatography resulting two fractions with lower antioxidant activity F.5.1 (IC50 = 85.18 µg/mL) and F.5.2 (IC50 = 34.94 µg/mL). Characterization of fraction F.5.2 using infrared spectroscopy showed that component in fraction F.5.2 contains NH-substituted benzene.
ISSN:1410-8917
2597-9914
DOI:10.14710/jksa.22.5.179-183